Sorting of lysosomal proteins

Biochimica et Biophysica Acta (BBA) - Molecular Cell Research - Tập 1793 Số 4 - Trang 605-614 - 2009
Thomas Braulke1, Juan S. Bonifacino2
1University Medical Center Hamburg-Eppendorf, Department Biochemistry, Children's Hospital Research campus, Martinistr.52, 20246, Hamburg, Germany.
2Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

van Meel, 2008, Imaging and imagination: understanding the endo-lysosomal system, Histochem. Cell Biol., 129, 253, 10.1007/s00418-008-0384-0

Helenius, 2001, Intracellular functions of N-linked glycans, Science, 291, 2364, 10.1126/science.291.5512.2364

Ruddock, 2006, N-glycan processing in ER quality control, J. Cell Sci., 119, 4373, 10.1242/jcs.03225

Dierks, 2003, Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme, Cell, 113, 435, 10.1016/S0092-8674(03)00347-7

Ghosh, 2007, Human sulfatases: a structural perspective to catalysis, Cell Mol. Life Sci., 64, 2013, 10.1007/s00018-007-7175-y

Mariappan, 2008, ERp44 mediates a thiol-independent retention of formylglycine-generating enzyme in the endoplasmic reticulum., J. Biol. Chem., 283, 6375, 10.1074/jbc.M709171200

Riikonen, 1995, Immediate interaction between the nascent subunits and two conserved amino acids Trp34 and Thr206 are needed for the catalytic activity of aspartylglucosaminidase, J. Biol. Chem., 270, 4903, 10.1074/jbc.270.9.4903

Lazzarino, 1989, Mannose processing is an important determinant in the assembly of phosphorylated high mannose-type oligosaccharides., J. Biol. Chem., 264, 5015, 10.1016/S0021-9258(18)83692-4

Raas-Rothschild, 2000, Molecular basis of variant pseudo-Hurler polydystrophy (mucolipidosis IIIC), J. Clin. Invest., 105, 673, 10.1172/JCI5826

Tiede, 2005, Mucolipidosis II is caused by mutations in GNPTA encoding the α/β GlcNAc-1-phosphotransferase, Nat. Med., 11, 1109, 10.1038/nm1305

Kudo, 2005, The α- and β-subunits of the human UPD-N-acetylglucosamine: lysosomal enzyme N-acetylglucosamine-1-phosphotransferase are encoded by a single cDNA, J. Biol. Chem., 280, 36141, 10.1074/jbc.M509008200

Lee, 2007, Murine UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase lacking the gamma-subunit retains substantial activity toward acid hydrolases, J. Biol. Chem., 282, 27198, 10.1074/jbc.M704067200

Baranski, 1990, Generation of a lysosomal enzyme targeting signal in the secretory protein pepsinogen, Cell, 63, 281, 10.1016/0092-8674(90)90161-7

Tikkanen, 1997, Several cooperating binding sites mediate the interaction of a lysosomal enzyme with phosphotransferase, EMBO J., 16, 6684, 10.1093/emboj/16.22.6684

Yaghootfam, 2003, Recognition of arylsulfatase A and B by the UDP-N-acetylglucosamine:lysosomal enzyme N-acetylglucosamine-phosphotransferase, J. Biol. Chem., 278, 32653, 10.1074/jbc.M304865200

Kornfeld, 1999, Molecular cloning and functional expression of two splice forms of human N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase, J. Biol. Chem., 274, 32778, 10.1074/jbc.274.46.32778

Rohrer, 2001, Lysosomal hydrolase mannose 6-phosphate uncovering enzyme resides in the trans-Golgi network, Mol. Biol. Cell, 12, 1623, 10.1091/mbc.12.6.1623

Kornfeld, 1998, Purification and multimeric structure of bovine N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase, J. Biol. Chem., 273, 23203, 10.1074/jbc.273.36.23203

Do, 2002, Human mannose 6-phosphate-uncovering enzyme is synthesized as a proenzyme that is activated by the endoprotease furin, J. Biol. Chem., 277, 29737, 10.1074/jbc.M202369200

Sleat, 2006, Identification of sites of mannose 6-phosphorylation on lysosomal proteins., Mol. Cell Proteomics, 5, 686, 10.1074/mcp.M500343-MCP200

Della Valle, 2006, Demonstration of lysosomal localization for the mammalian ependymin-related protein using classical approaches combined with a novel density shift method, J. Biol. Chem., 281, 35436, 10.1074/jbc.M606208200

Hille, 1990, Occurrence of tyrosine sulfate in proteins–a balance sheet. 1. Secretory and lysosomal proteins, Eur. J. Biochem., 188, 577, 10.1111/j.1432-1033.1990.tb15438.x

Ishidoh, 2002, Processing and activation of lysosomal proteinases, Biol. Chem., 383, 1827, 10.1515/BC.2002.206

Roberts, 2005, Lysosomal cysteine proteases: structure, function and inhibition of cathepsins., Drug News Perspect., 18, 605, 10.1358/dnp.2005.18.10.949485

Kolter, 2006, Sphingolipid metabolism diseases, Biochim. Biophys. Acta, 1758, 2057, 10.1016/j.bbamem.2006.05.027

Pshezhetsky, 2001, Lysosomal multienzyme complex: biochemistry, genetics, and molecular pathophysiology, Prog. Nucleic Acid Res. Mol. Biol., 69, 81, 10.1016/S0079-6603(01)69045-7

Ghosh, 2003, Mannose 6-phosphate receptors: new twists in the tale, Nat. Rev. Mol. Cell Biol., 4, 202, 10.1038/nrm1050

Braulke, 1987, Is movement of mannose 6-phosphate-specific receptor triggered by binding of lysosomal enzymes?, J. Cell Biol., 104, 1735, 10.1083/jcb.104.6.1735

Breuer, 1997, Serine phosphorylation site of the 46-kDa mannose 6-phosphate receptor is required for transport to the plasma membrane in Madin-Darby canine kidney and mouse fibroblast cells, Mol. Biol. Cell, 8, 567, 10.1091/mbc.8.4.567

York, 1999, The rate of internalization of the mannose 6-phosphate/insulin-like growth factor II receptor is enhanced by multivalent ligand binding, J. Biol. Chem., 274, 1164, 10.1074/jbc.274.2.1164

Kang, 1998, Retinoic acid alters the intracellular trafficking of the mannose-6-phosphate/insulin-like growth factor II receptor and lysosomal enzymes, Proc. Natl. Acad. Sci. U. S. A., 95, 13687, 10.1073/pnas.95.23.13687

Braulke, 1999, Type-2 IGF receptor: a multi-ligand binding protein, Horm. Metab. Res., 31, 242, 10.1055/s-2007-978725

Pohlmann, 1995, The two mannose 6-phosphate receptors transport distinct complements of lysosomal proteins, J. Biol. Chem., 270, 27311, 10.1074/jbc.270.45.27311

Sohar, 1998, Mouse mutants lacking the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor are impaired in lysosomal enzyme transport: comparison of cation-independent and cation-dependent mannose 6-phosphate receptor-deficient mice, Biochem. J., 330, 903, 10.1042/bj3300903

Qian, 2008, Proteomics analysis of serum from mutant mice reveals lysosomal proteins selectively transported by each of the two mannose 6-phosphate receptors, Mol. Cell Proteomics, 7, 58, 10.1074/mcp.M700217-MCP200

Kornfeld, 2001, I-cell disease and pseudo-Hurler polydystrophy: disorders of lysosomal enzyme phosphorylation and localization, 3421

Dittmer, 1999, Alternative mechanisms for trafficking of lysosomal enzymes in mannose 6-phosphate receptor-deficient mice are cell type-specific, J. Cell Sci., 112, 1591, 10.1242/jcs.112.10.1591

Bargal, 2006, When Mucolipidosis III meets Mucolipidosis II: GNPTA gene mutations in 24 patients, Mol. Genet. Metab., 88, 359, 10.1016/j.ymgme.2006.03.003

Lefrancois, 2003, The lysosomal trafficking of sphingolipid activator proteins (SAPs) is mediated by sortilin, EMBO J., 22, 6430, 10.1093/emboj/cdg629

Ni, 2006, The lysosomal trafficking of acid sphingomyelinase is mediated by sortilin and mannose 6-phosphate receptor, Traffic, 7, 889, 10.1111/j.1600-0854.2006.00429.x

Hiesberger, 1998, Cellular uptake of saposin (SAP) precursor and lysosomal delivery by the low density lipoprotein receptor-related protein (LRP), EMBO J., 17, 4617, 10.1093/emboj/17.16.4617

Reczek, 2007, LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase, Cell, 131, 770, 10.1016/j.cell.2007.10.018

Johnson, 1992, The cytoplasmic tail of the mannose 6-phosphate/insulin-like growth factor-II receptor has two signals for lysosomal enzyme sorting in the Golgi, J. Cell Biol., 119, 249, 10.1083/jcb.119.2.249

Johnson, 1992, A His-Leu-Leu sequence near the carboxyl terminus of the cytoplasmic domain of the cation-dependent mannose 6-phosphate receptor is necessary for the lysosomal enzyme sorting function, J. Biol. Chem., 267, 17110, 10.1016/S0021-9258(18)41900-X

Chen, 1993, Mutational analysis of the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor. A consensus casein kinase II site followed by 2 leucines near the carboxyl terminus is important for intracellular targeting of lysosomal enzymes, J. Biol. Chem., 268, 22338, 10.1016/S0021-9258(18)41533-5

Chen, 1997, Systematic analysis of the cation-independent mannose 6-phosphate receptor/insulin-like growth II factor receptor cytoplasmic domain, J. Biol. Chem., 272, 7003, 10.1074/jbc.272.11.7003

Bonifacino, 2003, Signals for sorting of transmembrane proteins to endosomes and lysosomes, Annu. Rev. Biochem., 72, 395, 10.1146/annurev.biochem.72.121801.161800

Meresse, 1990, Phosphorylation of the cytoplasmic domain of the bovine cation-independent mannose 6-phosphate receptor. Serines 2421 and 2492 are the targets of a casein kinase II associated to the Golgi-derived HAI adaptor complex, J. Biol. Chem., 265, 18833, 10.1016/S0021-9258(17)30589-6

Rosorius, 1993, Phosphorylation of the cytoplasmic tail of the 300-kDa mannose 6- phosphate receptor is required for the interaction with a cytosolic protein, J. Biol. Chem., 268, 21470, 10.1016/S0021-9258(20)80560-2

Körner, 1994, In vitro phosphorylation of the 46-kDa mannose 6-phosphate receptor by casein kinase II. Structural requirements for efficient phosphorylation, J. Biol. Chem., 269, 16529, 10.1016/S0021-9258(19)89419-X

Kato, 2002, Phosphoregulation of sorting signal VHS domain interactions by a direct electrostatic mechanism, Nat. Struct. Biol., 9, 532

Nielsen, 2001, The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein, EMBO J., 20, 2180, 10.1093/emboj/20.9.2180

Nielsen, 2007, Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor SorLA, Mol. Cell Biol., 27, 6842, 10.1128/MCB.00815-07

Puertollano, 2001, Sorting of mannose 6-phosphate receptors mediated by the GGAs, Science, 292, 1712, 10.1126/science.1060750

Takatsu, 2002, GGA proteins associate with Golgi membranes through interaction between their GGAH domains and ADP-ribosylation factors, Biochem. J., 365, 369, 10.1042/bj20020428

Zhu, 2001, Binding of GGA2 to the lysosomal enzyme sorting motif of the mannose 6- phosphate receptor, Science, 292, 1716, 10.1126/science.1060896

Doray, 2002, Interaction of the cation-dependent mannose 6-phosphate receptor with GGA proteins, J. Biol. Chem., 277, 18477, 10.1074/jbc.M201879200

Boman, 2000, A family of ADP-ribosylation factor effectors that can alter membrane transport through the trans-Golgi, Mol. Biol. Cell, 11, 1241, 10.1091/mbc.11.4.1241

Dell'Angelica, 2000, GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex, J. Cell Biol., 149, 81, 10.1083/jcb.149.1.81

Hirst, 2000, A family of proteins with gamma-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome, J. Cell Biol., 149, 67, 10.1083/jcb.149.1.67

Bonifacino, 2004, The GGA proteins: adaptors on the move, Nat. Rev. Mol. Cell Biol., 5, 23, 10.1038/nrm1279

Ghosh, 2004, The GGA proteins: key players in protein sorting at the trans-Golgi network, Eur. J. Cell Biol., 83, 257, 10.1078/0171-9335-00374

Misra, 2002, Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains, Nature, 415, 933, 10.1038/415933a

Shiba, 2002, Structural basis for recognition of acidic-cluster dileucine sequence by GGA1, Nature, 415, 937, 10.1038/415937a

Zhu, 2003, Crystal structure of GGA2 VHS domain and its implication in plasticity in the ligand binding pocket, FEBS Lett., 537, 171, 10.1016/S0014-5793(03)00095-4

Shiba, 2004, Insights into the phosphoregulation of beta-secretase sorting signal by the VHS domain of GGA1, Traffic, 5, 437, 10.1111/j.1600-0854.2004.00188.x

Puertollano, 2001, The GGAs promote ARF-dependent recruitment of clathrin to the TGN, Cell, 105, 93, 10.1016/S0092-8674(01)00299-9

Collins, 2003, The structure of the GGA1-GAT domain reveals the molecular basis for ARF binding and membrane association of GGAs, Dev. Cell, 4, 321, 10.1016/S1534-5807(03)00037-6

Shiba, 2003, Molecular mechanism of membrane recruitment of GGA by ARF in lysosomal protein transport, Nat. Struct. Biol., 10, 386, 10.1038/nsb920

Suer, 2003, Structure of the GAT domain of human GGA1: a syntaxin amino-terminal domain fold in an endosomal trafficking adaptor, Proc. Natl. Acad. Sci. U. S. A., 100, 4451, 10.1073/pnas.0831133100

Zhu, 2003, Crystal structure of the human GGA1 GAT domain, Biochemistry, 42, 6392, 10.1021/bi034334n

Hirsch, 2003, Arf regulates interaction of GGA with mannose-6-phosphate receptor, Traffic, 4, 26, 10.1034/j.1600-0854.2003.40105.x

Wang, 2007, PI4P promotes the recruitment of the GGA adaptor proteins to the trans-Golgi network and regulates their recognition of the ubiquitin sorting signal, Mol. Biol. Cell, 18, 2646, 10.1091/mbc.E06-10-0897

Dell'Angelica, 1998, Association of the AP-3 adaptor complex with clathrin, Science, 280, 431, 10.1126/science.280.5362.431

Doray, 2002, Autoinhibition of the ligand-binding site of GGA1/3 VHS domains by an internal acidic cluster-dileucine motif, Proc. Natl. Acad. Sci. U. S. A., 99, 8072, 10.1073/pnas.082235699

Lui, 2003, Binding Partners for the COOH-Terminal Appendage Domains of the GGAs and γ-Adaptin, Mol. Biol. Cell, 14, 2385, 10.1091/mbc.E02-11-0735

Collins, 2003, Structural basis for binding of accessory proteins by the appendage domain of GGAs, Nat. Struct. Biol., 10, 607, 10.1038/nsb955

Mattera, 2003, Divalent interaction of the GGAs with the Rabaptin-5-Rabex-5 complex, EMBO J., 22, 78, 10.1093/emboj/cdg015

Miller, 2003, Recognition of accessory protein motifs by the g-adaptin ear domain of GGA3, Nat. Struct. Biol., 10, 599, 10.1038/nsb953

Mattera, 2004, Definition of the consensus motif recognized by gamma-adaptin ear domains, J. Biol. Chem., 279, 8018, 10.1074/jbc.M311873200

Mardones, 2007, The TGN accessory protein p56 promotes long-range movement of GG A/clathrin-containing transport carriers and lysosomal enzyme sorting, Mol. Biol. Cell, 18, 3486, 10.1091/mbc.E07-02-0190

Höning, 1997, The 46-kDa mannose 6-phosphate receptor contains multiple binding sites for clathrin adaptors, J. Biol. Chem., 272, 19884, 10.1074/jbc.272.32.19884

Ghosh, 2004, The cytoplasmic tail of the cation-independent mannose 6-phosphate receptor contains four binding sites for AP-1, Arch. Biochem. Biophys., 426, 225, 10.1016/j.abb.2004.02.011

Ghosh, 2003, AP-1 binding to sorting signals and release from clathrin-coated vesicles is regulated by phosphorylation, J. Cell Biol., 160, 699, 10.1083/jcb.200211080

Stöckli, 2004, The acidic cluster of the CK2 site of the cation-dependent mannose 6-phosphate receptor (CD-MPR) but not its phosphorylation is required for GGA1 and AP-1 binding, J. Biol. Chem., 279, 23542, 10.1074/jbc.M313525200

Robinson, 2004, Adaptable adaptors for coated vesicles, Trends Cell Biol., 14, 167, 10.1016/j.tcb.2004.02.002

Ohno, 1995, Interaction of tyrosine-based sorting signals with clathrin-associated proteins, Science, 269, 1872, 10.1126/science.7569928

Ohno, 1996, Structural determinants of interaction of tyrosine-based sorting signals with the adaptor medium chains, J. Biol. Chem., 271, 29009, 10.1074/jbc.271.46.29009

Janvier, 2003, Recognition of dileucine-based sorting signals from HIV-1 Nef and LIMP-II by the AP-1 γ–σ1 and AP-3 δ–σ3 hemicomplexes, J. Cell Biol., 163, 1281, 10.1083/jcb.200307157

Doray, 2007, The gamma/sigma1 and alpha/sigma2 hemicomplexes of clathrin adaptors AP-1 and AP-2 harbor the dileucine recognition site, Mol. Biol. Cell, 18, 1887, 10.1091/mbc.E07-01-0012

Traub, 1995, Different domains of the AP-1 adaptor complex are required for Golgi membrane binding and clathrin recruitment, J. Biol. Chem., 270, 4933, 10.1074/jbc.270.9.4933

Zhu, 1999, ADP-ribosylation factor 1 dependent clathrin coat assembly on synthetic liposomes, Proc. Natl. Acad. Sci. U. S. A., 96, 5013, 10.1073/pnas.96.9.5013

Austin, 2002, Site-specific cross-linking reveals a differential direct interaction of class 1, 2, and 3 ADP-ribosylation factors with adaptor protein complexes 1 and 3, Biochemistry, 41, 4669, 10.1021/bi016064j

Lee, 2008, Binding of cargo sorting signals to AP-1 enhances its association with ADP ribosylation factor 1-GTP, J. Cell Biol., 180, 467, 10.1083/jcb.200709037

Wang, 2003, Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi, Cell, 114, 299, 10.1016/S0092-8674(03)00603-2

Shih, 1995, A clathrin-binding site in the hinge of the beta 2 chain of mammalian AP-2 complexes, J. Biol. Chem., 270, 31083, 10.1074/jbc.270.52.31083

Doray, 2001, Gamma subunit of the AP-1 adaptor complex binds clathrin: implications for cooperative binding in coated vesicle assembly, Mol. Biol. Cell, 12, 1925, 10.1091/mbc.12.7.1925

Page, 1999, Gamma-synergin: an EH domain-containing protein that interacts with gamma-adaptin, J. Cell Biol., 146, 993, 10.1083/jcb.146.5.993

Kent, 2002, Gamma-adaptin appendage domain: structure and binding site for Eps15 and gamma-synergin, Structure, 10, 1139, 10.1016/S0969-2126(02)00801-8

Kalthoff, 2002, Clint: a novel clathrin-binding ENTH-domain protein at the golgi, Mol. Biol. Cell, 13, 4060, 10.1091/mbc.E02-03-0171

Wasiak, 2002, Enthoprotin: a novel clathrin-associated protein identified through subcellular proteomics, J. Cell Biol., 158, 855, 10.1083/jcb.200205078

Hirst, 2003, EpsinR: an ENTH Domain-containing Protein that Interacts with AP-1, Mol. Biol. Cell, 14, 625, 10.1091/mbc.E02-09-0552

Mills, 2003, EpsinR: an AP1/clathrin interacting protein involved in vesicle trafficking, J. Cell Biol., 160, 213, 10.1083/jcb.200208023

Hirst, 2005, The aftiphilin/p200/gamma-synergin complex, Mol. Biol. Cell, 16, 2554, 10.1091/mbc.E04-12-1077

Schmid, 2006, Role of the AP2 beta-appendage hub in recruiting partners for clathrin-coated vesicle assembly, PLoS. Biol., 4, e262, 10.1371/journal.pbio.0040262

Nogi, 2002, Structural basis for the accessory protein recruitment by the gamma-adaptin ear domain, Nat. Struct. Biol., 9, 527

Neubrand, 2005, Gamma-BAR, a novel AP-1-interacting protein involved in post-Golgi trafficking, EMBO J., 24, 1122, 10.1038/sj.emboj.7600600

Kametaka, 2007, Canonical interaction of cyclin G associated kinase with adaptor protein 1 regulates lysosomal enzyme sorting, Mol. Biol. Cell, 18, 2991, 10.1091/mbc.E06-12-1162

Doray, 2002, Cooperation of GGAs and AP-1 in packaging MPRs at the trans-Golgi network, Science, 297, 1700, 10.1126/science.1075327

Geuze, 1985, Possible pathways for lysosomal enzyme delivery, J. Cell Biol., 101, 2253, 10.1083/jcb.101.6.2253

Klumperman, 1993, Differences in the endosomal distributions of the two mannose 6- phosphate receptors, J. Cell Biol., 121, 997, 10.1083/jcb.121.5.997

Huang, 2001, Trafficking of yellow-fluorescent-protein-tagged mu1 subunit of clathrin adaptor AP-1 complex in living cells, Traffic, 2, 345, 10.1034/j.1600-0854.2001.25020506.x

Waguri, 2002, Visualization of TGN to endosomes trafficking through fluorescently labeled MPR and AP-1 in living cells, Mol. Biol. Cell, 14, 142, 10.1091/mbc.E02-06-0338

Puertollano, 2003, Morphology and dynamics of clathrin/GGA1-coated carriers budding from the trans-Golgi network, Mol. Biol. Cell, 14, 1545, 10.1091/mbc.02-07-0109

Polishchuk, 2006, Ultrastructure of long-range transport carriers moving from the trans Golgi network to peripheral endosomes, Traffic, 7, 1092, 10.1111/j.1600-0854.2006.00453.x

Zhang, 2007, Clathrin adaptor GGA1 polymerizes clathrin into tubules, J. Biol. Chem., 282, 13282, 10.1074/jbc.M700936200

Kornfeld, 1989, The biogenesis of lysosomes, Annu. Rev. Cell Biol., 5, 483, 10.1146/annurev.cb.05.110189.002411

Sahagian, 1981, Characterization of a membrane-associated receptor from bovine liver that binds phosphomannosyl residues of bovine testicular beta-galactosidase, Proc. Natl. Acad. Sci. U. S. A., 78, 4289, 10.1073/pnas.78.7.4289

Schmid, 1989, Acidification of endosome subpopulations in wild-type Chinese hamster ovary cells and temperature-sensitive acidification-defective mutants, J. Cell Biol., 108, 1291, 10.1083/jcb.108.4.1291

Lombardi, 1993, Rab9 functions in transport between late endosomes and the trans Golgi network, EMBO J., 12, 677, 10.1002/j.1460-2075.1993.tb05701.x

Riederer, 1994, Lysosome biogenesis requires Rab9 function and receptor recycling from endosomes to the trans-Golgi network, J. Cell Biol., 125, 573, 10.1083/jcb.125.3.573

Diaz, 1998, TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking, Cell, 93, 433, 10.1016/S0092-8674(00)81171-X

Barbero, 2002, Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells, J. Cell Biol., 156, 511, 10.1083/jcb.200109030

Ludwig, 1991, Distribution of newly synthesized lysosomal enzymes in the endocytic pathway of normal rat kidney cells, J. Cell Biol., 115, 1561, 10.1083/jcb.115.6.1561

Runquist, 1991, Acid hydrolases in early and late endosome fractions from rat liver, J. Biol. Chem., 266, 22557, 10.1016/S0021-9258(18)54608-1

Press, 1998, Mutant Rab7 causes the accumulation of cathepsin D and cation- independent mannose 6-phosphate receptor in an early endocytic compartment, J. Cell Biol., 140, 1075, 10.1083/jcb.140.5.1075

Wilcke, 2000, Rab11 regulates the compartmentalization of early endosomes required for efficient transport from early endosomes to the trans-golgi network, J. Cell Biol., 151, 1207, 10.1083/jcb.151.6.1207

Umeda, 2003, Distribution and trafficking of MPR300 is normal in cells with cholesterol accumulated in late endocytic compartments: evidence for early endosome-to-TGN trafficking of MPR300, J. Lipid Res., 44, 1821, 10.1194/jlr.M300153-JLR200

Arighi, 2004, Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor, J Cell Biol, 165, 123, 10.1083/jcb.200312055

Seaman, 2004, Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer, J. Cell Biol., 165, 111, 10.1083/jcb.200312034

Carlton, 2004, Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high- curvature membranes and 3-phosphoinositides, Curr. Biol., 14, 1791, 10.1016/j.cub.2004.09.077

Mari, 2008, SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors, Traffic, 9, 380, 10.1111/j.1600-0854.2007.00686.x

Schweizer, 1997, Proper sorting of the cation-dependent mannose 6-phosphate receptor in endosomes depends on a pair of aromatic amino acids in its cytoplasmic tail, Proc. Natl. Acad. Sci. U. S. A., 94, 14471, 10.1073/pnas.94.26.14471

Orsel, 2000, Recognition of the 300-kDa mannose 6-phosphate receptor cytoplasmic domain by 47-kDa tail-interacting protein, Proc. Natl. Acad. Sci. U. S. A., 97, 9047, 10.1073/pnas.160251397

Seaman, 2007, Identification of a novel conserved sorting motif required for retromer-mediated endosome-to-TGN retrieval, J. Cell Sci., 120, 2378, 10.1242/jcs.009654

Tikkanen, 2000, The dileucine motif within the tail of MPR46 is required for sorting of the receptor in endosomes, Traffic, 1, 631, 10.1034/j.1600-0854.2000.010807.x

Tortorella, 2007, Role of an acidic cluster/dileucine motif in cation-independent mannose 6-phosphate receptor traffic, Traffic, 8, 402, 10.1111/j.1600-0854.2007.00541.x

Schweizer, 1996, Cysteine34 of the cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor is reversibly palmitoylated and required for normal trafficking and lysosomal enzyme sorting, J. Cell Biol., 132, 577, 10.1083/jcb.132.4.577

Meyer, 2000, mu1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors, EMBO J., 19, 2193, 10.1093/emboj/19.10.2193

Saint-Pol, 2004, Clathrin adaptor epsinR is required for retrograde sorting on early endosomal membranes, Dev. Cell, 6, 525, 10.1016/S1534-5807(04)00100-5

Lieu, 2007, The golgin GCC88 is required for efficient retrograde transport of cargo from the early endosomes to the trans-Golgi network, Mol. Biol. Cell, 18, 4979, 10.1091/mbc.E07-06-0622

Reddy, 2006, A functional role for the GCC185 golgin in mannose 6-phosphate receptor recycling, Mol. Biol. Cell, 17, 4353, 10.1091/mbc.E06-02-0153

Derby, 2007, The trans-Golgi network golgin, GCC185, is required for endosome-to-Golgi transport and maintenance of Golgi structure, Traffic, 8, 758, 10.1111/j.1600-0854.2007.00563.x

Perez-Victoria, 2008, Requirement of the human GARP complex for mannose 6-phosphate-receptor-dependent sorting of cathepsin D to lysosomes, Mol. Biol. Cell, 19, 2350, 10.1091/mbc.E07-11-1189

Mallard, 2002, Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform, J. Cell Biol., 156, 653, 10.1083/jcb.200110081

Medigeshi, 2003, Characterization of the in vitro retrograde transport of MPR46, Traffic, 4, 802, 10.1034/j.1600-0854.2003.00136.x

Amessou, 2007, Syntaxin 16 and syntaxin 5 are required for efficient retrograde transport of several exogenous and endogenous cargo proteins, J. Cell Sci., 120, 1457, 10.1242/jcs.03436

Ganley, 2008, A syntaxin 10-SNARE complex distinguishes two distinct transport routes from endosomes to the trans-Golgi in human cells, J. Cell Biol., 180, 159, 10.1083/jcb.200707136

Geuze, 1988, Sorting of mannose 6-phosphate receptors and lysosomal membrane proteins in endocytic vesicles, J. Cell Biol., 107, 2491, 10.1083/jcb.107.6.2491

Jadot, 1992, Characterization of the signal for rapid internalization of the bovine mannose 6-phosphate/insulin-like growth factor-II receptor, J. Biol. Chem., 267, 11069, 10.1016/S0021-9258(19)49876-1

Johnson, 1990, Cation-dependent mannose 6-phosphate receptor contains two internalization signals in its cytoplasmic domain, Proc. Natl. Acad. Sci. U. S. A., 87, 10010, 10.1073/pnas.87.24.10010

Denzer, 1997, Identification of three internalization sequences in the cytoplasmic tail of the 46 kDa mannose 6-phosphate receptor, Biochem. J., 326, 497, 10.1042/bj3260497

Storch, 2000, Multiple C-terminal motifs of the 46-kDa mannose 6-phosphate receptor tail contribute to efficient binding of medium chains of AP-2 and AP-3, J. Biol. Chem., 276, 4298, 10.1074/jbc.M005548200

Owen, 1998, A structural explanation for the recognition of tyrosine-based endocytotic signals, Science, 282, 1327, 10.1126/science.282.5392.1327

Duncan, 1988, Intracellular movement of two mannose 6-phosphate receptors: return to the Golgi apparatus, J. Cell Biol., 106, 617, 10.1083/jcb.106.3.617

Jin, 1989, Transport of surface mannose 6-phosphate receptor to the Golgi complex in cultured human cells, J. Biol. Chem., 264, 7675, 10.1016/S0021-9258(18)83287-2

Brady, 2006, Enzyme replacement for lysosomal diseases, Annu. Rev. Med., 57, 283, 10.1146/annurev.med.57.110104.115650

Rohrer, 1996, The targeting of Lamp1 to lysosomes is dependent on the spacing of its cytoplasmic tail tyrosine sorting motif relative to the membrane, J. Cell Biol., 132, 565, 10.1083/jcb.132.4.565

Geisler, 1998, Leucine-based receptor sorting motifs are dependent on the spacing relative to the plasma membrane, J. Biol. Chem., 273, 21316, 10.1074/jbc.273.33.21316

Harter, 1992, Transport of the lysosomal membrane glycoprotein lgp120 (lgp-A) to lysosomes does not require appearance on the plasma membrane, J. Cell Biol., 117, 311, 10.1083/jcb.117.2.311

Pond, 1995, A role for acidic residues in di-leucine motif-based targeting to the endocytic pathway, J. Biol. Chem., 270, 19989, 10.1074/jbc.270.34.19989

Sandoval, 2000, Distinct reading of different structural determinants modulates the dileucine-mediated transport steps of the lysosomal membrane protein LIMPII and the insulin-sensitive glucose transporter GLUT4, J. Biol. Chem., 275, 39874, 10.1074/jbc.M006261200

Qureshi, 2007, Regulation of P2X4 receptors by lysosomal targeting, glycan protection and exocytosis, J. Cell Sci., 120, 3838, 10.1242/jcs.010348

Kyttälä, 2004, Two motifs target Batten disease protein CLN3 to lysosomes in transfected nonneuronal and neuronal cells, Mol. Biol. Cell, 15, 1313, 10.1091/mbc.E03-02-0120

Storch, 2004, A dileucine motif and a cluster of acidic amino acids in the second cytoplasmic domain of the Batten disease-related CLN3 protein are required for efficient lysosomal targeting, J. Biol. Chem., 279, 53625, 10.1074/jbc.M410930200

Piccirillo, 2006, An unconventional dileucine-based motif and a novel cytosolic motif are required for the lysosomal and melanosomal targeting of OA1, J. Cell Sci., 119, 2003, 10.1242/jcs.02930

Miyashita, 2007, A dileucine motif in its cytoplasmic domain directs beta-catenin-uncoupled E-cadherin to the lysosome, J. Cell Sci., 120, 4395, 10.1242/jcs.03489

Höning, 1996, The tyrosine-based lysosomal targeting signal in lamp-1 mediates sorting into Golgi-derived clathrin-coated vesicles, EMBO J., 15, 5230, 10.1002/j.1460-2075.1996.tb00908.x

Dietrich, 1997, Regulation and function of CD3gamma DxxxLL motif: a binding site for adaptor protein-1 and adaptor protein-2 in vitro, J. Cell Biol., 138, 271, 10.1083/jcb.138.2.271

Hirst, 1999, Characterization of a fourth adaptor-related protein complex, Mol. Biol. Cell, 10, 2787, 10.1091/mbc.10.8.2787

Aguilar, 2001, Signal-binding specificity of the m4 subunit of the adaptor protein complex, AP-4, J. Biol. Chem., 276, 13145, 10.1074/jbc.M010591200

Dell'Angelica, 1997, AP-3: an adaptor-like protein complex with ubiquitous expression, EMBO J., 15, 917, 10.1093/emboj/16.5.917

Simpson, 1997, Characterization of the adaptor-related protein complex, AP-3, J. Cell Biol., 137, 835, 10.1083/jcb.137.4.835

Borner, 2006, Comparative proteomics of clathrin-coated vesicles, J. Cell Biol., 175, 571, 10.1083/jcb.200607164

Peden, 2004, Localization of the AP-3 adaptor complex defines a novel endosomal exit site for lysosomal membrane proteins, J. Cell Biol., 164, 1065, 10.1083/jcb.200311064

Dell'Angelica, 1999, AP-4, a novel protein complex related to clathrin adaptors, J. Biol. Chem., 274, 7278, 10.1074/jbc.274.11.7278

Chaudhuri, 2007, Downregulation of CD4 by human immunodeficiency virus type 1 Nef is dependent on clathrin and involves direct interaction of Nef with the AP2 clathrin adaptor, J. Virol., 81, 3877, 10.1128/JVI.02725-06

Storch, 2007, C-terminal prenylation of the CLN3 membrane glycoprotein is required for efficient endosomal sorting to lysosomes, Traffic, 8, 431, 10.1111/j.1600-0854.2007.00537.x

Vergarajauregui, 2006, Two di-leucine motifs regulate trafficking of mucolipin-1 to lysosomes, Traffic, 7, 337, 10.1111/j.1600-0854.2006.00387.x

Hunziker, 1996, Intracellular trafficking of lysosomal membrane proteins, Bioassays, 18, 379, 10.1002/bies.950180508

Lippincott-Schwartz, 1987, Cycling of the integral membrane glycoprotein, LEP100, between plasma membrane and lysosomes: kinetic and morphological analysis, Cell, 49, 669, 10.1016/0092-8674(87)90543-5

Janvier, 2005, Role of the endocytic machinery in the sorting of lysosome-associated membrane proteins., Mol. Biol. Cell, 16, 4231, 10.1091/mbc.E05-03-0213

Dell'Angelica, 1999, Altered trafficking of lysosomal membrane proteins in Hermansky-Pudlak syndrome due to mutations in the b3A subunit of the AP-3 adaptor complex, Mol. Cell, 3, 11, 10.1016/S1097-2765(00)80170-7

Peden, 2002, Assembly and function of AP-3 complexes in cells expressing mutant subunits, J. Cell Biol., 156, 327, 10.1083/jcb.200107140

Ihrke, 2004, Differential use of two AP-3-mediated pathways by lysosomal membrane proteins, Traffic, 5, 946, 10.1111/j.1600-0854.2004.00236.x

Kyttälä, 2005, AP-1 and AP-3 facilitate lysosomal targeting of Batten disease protein CLN3 via its dileucine motif, J. Biol. Chem., 280, 10277, 10.1074/jbc.M411862200

Miedel, 2006, Posttranslational cleavage and adaptor protein complex-dependent trafficking of mucolipin-1, J. Biol. Chem., 281, 12751, 10.1074/jbc.M511104200

McCormick, 2005, Involvement of clathrin and AP-2 in the trafficking of MHC class II molecules to antigen-processing compartments, Proc. Natl. Acad. Sci. U. S. A., 102, 7910, 10.1073/pnas.0502206102

Dugast, 2005, AP2 clathrin adaptor complex, but not AP1, controls the access of the major histocompatibility complex (MHC) class II to endosomes, J. Biol. Chem., 280, 19656, 10.1074/jbc.M501357200

Braun, 1989, Lysosomal acid phosphatase is transported to lysosomes via the cell surface, EMBO J., 8, 3633, 10.1002/j.1460-2075.1989.tb08537.x

Waheed, 1988, Human lysosomal acid phosphatase is transported as a transmembrane protein to lysosomes in transfected baby hamster kidney cells, EMBO J., 7, 2351, 10.1002/j.1460-2075.1988.tb03079.x

Peters, 1990, Targeting of a lysosomal membrane protein: a tyrosine-containing endocytosis signal in the cytoplasmic tail of lysosomal acid phosphatase is necessary and sufficient for targeting to lysosomes, EMBO J., 9, 3497, 10.1002/j.1460-2075.1990.tb07558.x

Lehmann, 1992, The internalization signal in the cytoplasmic tail of lysosomal acid phosphatase consists of the hexapeptide PGYRHV, EMBO J., 11, 4391, 10.1002/j.1460-2075.1992.tb05539.x

Obermüller, 2002, The tyrosine motifs of Lamp 1 and LAP determine their direct and indirect targetting to lysosomes, J. Cell Sci., 115, 185, 10.1242/jcs.115.1.185

Pak, 2006, Transport of LAPTM5 to lysosomes requires association with the ubiquitin ligase Nedd4, but not LAPTM5 ubiquitination, J. Cell Biol., 175, 631, 10.1083/jcb.200603001