Sorting carbon nanotubes by electronic structure using density differentiation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Baughman, R. H., Zakhidov, A. A. & de Heer, W. A. Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002).
Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).
Charlier, J. C. & Issi, J. P. Electronic structure and quantum transport in carbon nanotubes. Appl. Phys. A 67, 79–87 (1998).
Weisman, R. B. & Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Lett. 3, 1235–1238 (2003).
Graham, J. M. Biological Centrifugation (BIOS Scientific, Milton Park, 2001).
Anderson, N. G. et al. K-series centrifuges. I. Development of K-2 continuous-sample-flow-with-banding centrifuge system for vaccine purification. Anal. Biochem. 32, 460–494 (1969).
Arnold, M. S., Stupp, S. I. & Hersam, M. C. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 5, 713–718 (2005).
O'Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).
Chen, Z. H. et al. Bulk separative enrichment in metallic or semiconducting single-walled carbon nanotubes. Nano Lett. 3, 1245–1249 (2003).
Haddon, R. C., Sippel, J., Rinzler, A. G. & Papadimitrakopoulos, F. Purification and separation of carbon nanotubes. Mater. Res. Soc. Bull. 29, 252–259 (2004).
Krupke, R., Hennrich, F., Kappes, M. M. & Lohneysen, H. V. Surface conductance induced dielectrophoresis of semiconducting single-walled carbon nanotubes. Nano Lett. 4, 1395–1399 (2004).
Maeda, Y. et al. Large-scale separation of metallic and semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 10287–10290 (2005).
Collins, P. G., Arnold, M. S. & Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292, 706–709 (2001).
Samsonidze, G. G. et al. Quantitative evaluation of the octadecylamine-assisted bulk separation of semiconducting and metallic single-wall carbon nanotubes by resonance Raman spectroscopy. Appl. Phys. Lett. 85, 1006–1008 (2004).
Strano, M. S. et al. Electronic structure control of single-walled carbon nanotube functionalization. Science 301, 1519–1522 (2003).
Zheng, M. et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003).
Peng, H. Q., Alvarez, N. T., Kittrell, C., Hauge, R. H. & Schmidt, H. K. Dielectrophoresis field flow fractionation of single-walled carbon nanotubes. J. Am. Chem. Soc. 128, 8396–8397 (2006).
Islam, M. F., Rojas, E., Bergey, D. M., Johnson, A. T. & Yodh, A. G. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 3, 269–273 (2003).
Wenseleers, W. et al. Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv. Funct. Mater. 14, 1105–1112 (2004).
Mukhopadhyay, S. & Maitra, U. Chemistry and biology of bile acids. Curr. Sci. 87, 1666–1683 (2004).
Strano, M. S. Probing chiral selective reactions using a revised Kataura plot for the interpretation of single-walled carbon nanotube spectroscopy. J. Am. Chem. Soc. 125, 16148–16153 (2003).
Wanless, E. J. & Ducker, W. A. Organization of sodium dodecyl sulfate at the graphite–solution interface. J. Phys. Chem. 100, 3207–3214 (1996).
Sasaki, Y. et al. The adsorption behavior of four bile salt species on graphite in water—evaluation of effective hydrophobicity of bile acids. Colloids Surf. B 5, 241–247 (1995).
Tamminen, J. & Kolehmainen, E. Bile acids as building blocks of supramolecular hosts. Molecules 6, 21–46 (2001).
Lu, J. et al. Selective interaction of large or charge-transfer aromatic molecules with metallic single-wall carbon nanotubes: Critical role of the molecular size and orientation. J. Am. Chem. Soc. 128, 5114–5118 (2006).
Ford, T., Graham, J. & Rickwood, D. Iodixanol—a nonionic isosmotic centrifugation medium for the formation of self-generated gradients. Anal. Biochem. 220, 360–366 (1994).
Davies, I. & Graham, J. M. The use of self-generated gradients of iodixanol for the purification of macromolecules and macromolecular complexes. FASEB J. 11, A908–A908 (1997).