Sorption of copper, nickel and cadmium on bone char

Pleiades Publishing Ltd - Tập 53 - Trang 618-627 - 2017
J. I. Martins1,2, J. J. M. Órfão1,3, O. S. G. P. Soares3
1Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
2Universidade do Minho, LAB2PT- Laboratório de Paisagens, Património e Território, Braga, Portugal
3Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, da Universidade do Porto, Porto, Portugal

Tóm tắt

The sorption capacity of bone char was tested on the removal of copper, nickel and cadmium ions, from aqueous solutions. The Freundlich and Langmuir models were applied to the adsorption isotherms. The equilibrium data fitted well with the Langmuir model and the maximum loading capacities showed the following affinity order: Cu2+ (1.093 mmol g–1 at pH i 3, and 0.884 mmol g–1 at pH i 4) > Cd2+ (0.760 mmol g–1 at pH i 3, and 0.690 mmol g–1 at pH i 4) > Ni2+ (0.453 mmol g–1 at pH i 3, and 0.225 mmol g–1 at pH i 4). The kinetic data follow a diffusion model in the film and inside particles. A sorption mechanism based on ion exchange, attack by protons of the carbonate and hydroxide positions in the apatite lattice, and also on the adsorption of protons on the basic active sites of carbon, is proposed to explain the heavy metals removal and the pH decreasing in solution.

Tài liệu tham khảo

WHO/FAO/IAEA, Geneva: World Health Organization, 1996. Vassilev, S.V., Baxter, D., Andersen, L.K., et al., Fuel, 2012, vol. 94, p. 1. Williams, D.M., Clinical Significance of Copper Deficiency and Toxicity in the World Population, New York: Alan R. Liss, 1982. Sivulka, D.J., Regul. Toxicol. Pharmacol., 2005, vol. 43, p. 117. Swaddiwudhipong, W., Limpatanachote, P., Mahasakpan, P., et al., Environ. Res., 2012, vol. 112, p. 194. Leeden, M.C.V., Troise, F.L., and Todd, D.K., The Water Encyclopedia, Michigan: Lewis Publ., 1990. He, Z.L., Yang, X.E., and Stoffella, P.J., J. Trace Elem. Med. Biol., 2005, vol. 19, p. 125. Goyer, R.A., in Cassarett and Doull’s Toxicology: The Basic Science of Poisons, Klaassen, C.D., Ed., New York: McGraw-Hill, 2001. Herawati, N., Suzuki, S., Hayashi, K., et al., Bull. Environ. Contam. Toxicol., 2000, vol. 64, p. 33. Olayinka, K.O., Alo, B.I., and Adu, T., J. Appl. Sci., 2007, vol. 7, p. 2307. Shallari, S., Schwartz, C., Hasko, A., and Morel, J.L., Sci. Total Environ., 1998, vol. 209, p. 133. Arruti, A., Fernández-Olmo, I., and Irabien, A., J. Environ. Monit., 2010, vol. 12, p. 1451. Pacyna, J.M., in Toxicology of Metals, Chang, L.W., Magos, L., and Suzuli, T., Eds., Boca Raton, FL: CRC Press, 1996, p. 9. Christensen, R.E. and Delwiche, J.T., Water Res., 1982, vol. 6, p. 729. Seco, A., Marzal, P., and Gabaldón, C., J. Chem. Technol. Biotechnol., 1997, vol. 68, p. 23. Ferro-Garcia, M.A., Rivera-Utrilla, J., Rodriguez-Gordillo, J., and Bautista-Toledo, I., Carbon, 1998, vol. 26, p. 363. Bohli, T., Villaescusa, I., and Ouederni, A., J. Chem. Eng. Process Technol., 2013, vol. 4, p. 1. Acharya, J., Sahu, J.N., Mohanty, C.R., and Meikap, B.C., Chem. Eng. J., 2009, vol. 149, p. 249. Macdonald, A.I., Publ. Tech. Pap. Proc. Annu. Meet. Sugar Ind. Technol., 1975, vol. 34, p. 58. Celle, R. and Herve, D., Ind. Alim. Agric., 1980, vol. 97, p. 701. Bhargava, D.S. and Killedar, S.D., Res. J. Water Pollut. Control Fed., 1991, vol. 63, p. 848. Xu, Y. and Schwartz, F.W., Environ. Sci. Technol., 1994, vol. 28, p. 1472. Chen, X., Wright, J.V., Conca, J.L., and Peurrung, L.M., Environ. Sci. Technol., 1997, vol. 31, p. 624. Wakamura, M., Kandori, K., and Ishikawa, T., Colloids Surf., A, 1998, vol. 142, p. 107. Langmuir, I., J. Am. Chem. Soc., 1916, vol. 38, p. 2221. Freundlich, H.M.F., Z. Phys. Chem., 1906, vol. 57, p. 385. Gomes, C.M.P., Recovery of Gold by Ion Exchange with Resins, Oporto Univ., 1996. Milonjic, S.K., Cerovi, L.S., Cokeša, D.M., and Zec, S., J. Colloid Interface Sci., 2007, vol. 309, p. 155. Recillas, S., Rodríguez-Lugo, V., Montero, M.L., et al., J. Ceram. Process. Res., 2012, vol. 13, p. 5. Brundavanam, R.K., Poinern, G.E.J., and Fawcett, D., Am. J. Mater. Sci., 2013, vol. 3, p. 84. Legeros, R., Trautz, O., Klein, E., and Legeros, J., Specialia Exper., 1969, vol. 25, p. 5. Ivanovic, M.S., Smiciklas, I., and Pejanovic, S., Chem. Eng. J., 2013, vol. 223, p. 833. Persson, I., Pure Appl. Chem., 2010, vol. 82, p. 1901. Pasquarello, A., Petri, I., Salmon, P.S., et al., Science, 2001, vol. 291, p. 856. Bustamante, M., Valencia, I., and Castro, M., J. Phys. Chem. A, 2011, vol. 115, p. 4115. Bryantsev, V.S., Diallo, M.S., and Goddard, W.A., J. Phys. Chem. A, 2009, vol. 113, p. 9559. Pye, C.C., Tomney, M.R., and Rudolph, W.W., Can. J. Anal. Sci. Spectrosc., 2006, vol. 51, p. 140. Jeanjean, J., Vincent, U., and Fedoroff, M., J. Solid State Chem., 1994, vol. 108, p. 68. Lurtwitayapont, S. and Srisatit, T., EnvironmentAsia, 2010, vol. 3, p. 32. Moreno, J.C., Gomez, R., and Giraldo, L., Materials, 2010, vol. 3, p. 452. Dean, J.-A., Lange’s Handbook of Chemistry, New York: McGraw-Hill, 1973.