Sorption and swelling of semicrystalline polymers in supercritical CO2

Journal of Polymer Science, Part B: Polymer Physics - Tập 44 Số 11 - Trang 1531-1546 - 2006
Barbara Bonavoglia1, Giuseppe Storti1, Massimo Morbidelli1, Arvind Rajendran2, Marco Mazzotti2
1Institute of Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.
2Institute of Process Engineering, ETH Zürich, 8092 Zürich, Switzerland

Tóm tắt

Abstract

The equilibrium sorption and swelling behavior of four different polymers—poly(methyl methacrylate), poly(tetrafluoroethylene), poly(vinylidene fluoride), and the random copolymer tetrafluoroethylene–perfluoromethylvinylether–in supercritical CO2—are studied at different temperatures (from 40 to 80 °C) and pressures (up to 200 bar). Swelling is measured by visualization, and sorption through a gravimetric technique. From these data, the behavior of amorphous and semicrystalline polymers can be compared, particularly in terms of partial molar volume of CO2 in the polymer matrix. Both poly(methyl methacrylate) and the copolymer of tetrafluoroethylene exhibit a behavior typical of rubbery systems. On the contrary, polymers with a considerable degree of crystallinity, such as poly(tetrafluoroethylene) and poly (vinylidene fluoride), show larger values of partial molar volume. These can be related to the limited mobility of the polymer chains in a semicrystalline matrix, which causes the structure to “freeze” during the sorption process into a nonequilibrium state that can differ significantly from the actual thermodynamic equilibrium. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1531–1546, 2006

Từ khóa


Tài liệu tham khảo

10.1039/a906486i

10.1126/science.257.5072.945

10.1080/05704929708003318

10.1002/mcs.1220070403

10.1002/polb.1987.090251206

Liau I., 1985, In Supercritical Fluid Technology, 415

10.1021/ma00162a030

10.1002/polb.1990.090280808

10.1016/S0896-8446(98)00042-4

10.1002/polb.1994.090320313

10.1021/ma0343582

10.1023/A:1021189800844

10.1002/(SICI)1097-4628(19960124)59:4<695::AID-APP15>3.0.CO;2-P

10.1002/(SICI)1099-0488(19980930)36:13<2435::AID-POLB18>3.0.CO;2-4

10.1021/ma025929d

10.1080/01418610208235718

10.1021/ma00081a036

10.1002/1099-0488(20001101)38:21<2832::AID-POLB120>3.0.CO;2-2

Ebnesajjab S., 2003, Melt Processible Fluoropolymers, 4

Askeland D. R., 1996, In The Science and Engineering of Materials, 519

10.1002/pen.10299

10.1002/polb.1992.090301014

Askadskii A. A., 1996, In Physical Properties of Polymers, 21

Scheirs J., 1997, In Modern Fluoropolymers, 32

10.1002/(SICI)1099-0488(19980715)36:9<1513::AID-POLB9>3.0.CO;2-K

10.1016/S0168-583X(02)01732-9

10.1021/ma00008a057

10.1002/app.12622

10.1023/A:1010179306714

10.1021/la010061q

10.1021/ie049523w

10.1002/app.1990.070410106

10.1016/S0009-2509(01)00082-3

10.1002/pol.1971.160090906

10.1002/pol.1961.1205015411

10.1002/polb.1993.090311012

10.1002/(SICI)1099-0488(199608)34:11<1861::AID-POLB3>3.0.CO;2-V

10.1002/polb.1991.090290809

10.1007/978-3-662-03243-5

10.1021/ma00111a017

10.1002/pol.1982.180200804

Kirchheim R., 1992, Macromolecules, 6952

10.1021/ma0106090

10.1021/ma9708252

10.1002/1097-4628(20010207)79:6<1134::AID-APP180>3.0.CO;2-F

10.1002/(SICI)1099-0488(199705)35:7<1049::AID-POLB4>3.0.CO;2-R

10.1002/polb.10053

10.1016/0142-9418(90)90023-7

Ender D. H., 1986, Chemtech, 16, 52

10.1021/ma00050a057

10.1016/S0032-3861(99)00404-8

10.1021/cr970046j

10.1021/jp9615823

10.1016/S0032-3861(03)00020-X

10.1021/ma00109a023