Sorption and electrokinetic properties of ASR product and C-S-H: A comparative modelling study
Tài liệu tham khảo
Swamy, 1991
Broekmans, 2008
Ben Haha, 2007, Relation of expansion due to alkali silica reaction to the degree of reaction measured by SEM image analysis, Cem. Concr. Res., 37, 1206, 10.1016/j.cemconres.2007.04.016
Leemann, 2020, Characterization of amorphous and crystalline ASR products formed in concrete aggregates, Cem. Concr. Res., 137, 106190, 10.1016/j.cemconres.2020.106190
Shi, 2019, The role of calcium on the formation of alkali-silica reaction products, Cem. Concr. Res., 126, 105898, 10.1016/j.cemconres.2019.105898
Leemann, 2011, Alkali-silica reaction - the influence of calcium on silica dissolution and the formation of reaction products, J. Am. Ceram. Soc., 94, 1243, 10.1111/j.1551-2916.2010.04202.x
Shi, 2019, Synthesis, characterization, and water uptake property of alkali-silica reaction products, Cem. Concr. Res., 121, 58, 10.1016/j.cemconres.2019.04.009
Shi, 2020, Formation of shlykovite and ASR-P1 in concrete under accelerated alkali-silica reaction at 60 and 80 °C, Cem. Concr. Res., 137, 106213, 10.1016/j.cemconres.2020.106213
Pekov, 2010, Shlykovite KCa[Si4O9(OH)] · 3H2O and cryptophyllite K2Ca[Si4O10] · 5H2O, new mineral species from the Khibiny alkaline pluton, Kola Peninsula, Russia, 52, 767
Geng, 2020, Atomistic structure of alkali-silica reaction products refined from X-ray diffraction and micro X-ray absorption data, Cem. Concr. Res., 129, 105958, 10.1016/j.cemconres.2019.105958
Shi, 2020, The combined effect of potassium, sodium and calcium on the formation of alkali-silica reaction products, Cem. Concr. Res., 127, 105914, 10.1016/j.cemconres.2019.105914
Churakov, 2009, Structure of the interlayer in normal 11 Å tobermorite from an ab initio study, Eur. J. Mineral., 21, 261, 10.1127/0935-1221/2009/0021-1865
Churakov, 2009, Structural position of H2O molecules and hydrogen bonding in anomalous 11 Å tobermorite, Am. Mineral., 94, 156, 10.2138/am.2009.2907
Richardson, 2014, Model structures for C-(A)-S-H(I), Acta Crystallogr., B70, 903
Richardson, 2008, The calcium silicate hydrates, Cem. Concr. Res., 38, 137, 10.1016/j.cemconres.2007.11.005
L’Hôpital, 2016, Alkali uptake in calcium alumina silicate hydrate (C-A-S-H), Cem. Concr. Res., 85, 122, 10.1016/j.cemconres.2016.03.009
Lothenbach, 2015, Calcium silicate hydrates: solid and liquid phase composition, Cem. Concr. Res., 78, 57, 10.1016/j.cemconres.2015.03.019
Churakov, 2017, Thermodynamics and molecular mechanism of Al incorporation in calcium silicate hydrates, J. Phys. Chem. C, 121, 4412, 10.1021/acs.jpcc.6b12850
Labbez, 2011, C-S-H/solution interface: experimental and Monte Carlo studies, Cem. Concr. Res., 41, 161, 10.1016/j.cemconres.2010.10.002
Churakov, 2014, Intrinsic acidity of surface sites in calcium-silicate-hydrates and its implication to their electrokinetic properties, J. Phys. Chem. C, 118, 11752, 10.1021/jp502514a
Hong, 1999, Alkali binding in cement pastes: part I. The C-S-H phase, Cem. Concr. Res., 29, 1893, 10.1016/S0008-8846(99)00187-8
Labbez, 2006, Surface charge density and electrokinetic potential of highly charged minerals: experiments and Monte Carlo simulations on calcium silicate hydrate, J. Phys. Chem. B, 110, 9219, 10.1021/jp057096+
Vollpracht, 2016, The pore solution of blended cements: a review, Mater. Struct., 49, 3341, 10.1617/s11527-015-0724-1
Lothenbach, 2006, Thermodynamic modelling of the hydration of Portland cement, Cem. Concr. Res., 36, 209, 10.1016/j.cemconres.2005.03.001
Duchesne, 1994, The effectiveness of supplementary cementing materials in suppressing expansion due to ASR: another look at the reaction mechanisms part 2: pore solution chemistry, Cem. Concr. Res., 24, 221, 10.1016/0008-8846(94)90047-7
Shehata, 1999, The effects of fly ash composition on the chemistry of pore solution in hydrated cement pastes, Cem. Concr. Res., 29, 1915, 10.1016/S0008-8846(99)00190-8
Shehata, 2002, Use of ternary blends containing silica fume and fly ash to suppress expansion due to alkali-silica reaction in concrete, Cem. Concr. Res., 32, 341, 10.1016/S0008-8846(01)00680-9
Shi, 2018, Effects of alkali dosage and silicate modulus on alkali-silica reaction in alkali-activated slag mortars, Cem. Concr. Res., 111, 104, 10.1016/j.cemconres.2018.06.005
Lindgård, 2012, Alkali–silica reactions (ASR): literature review on parameters influencing laboratory performance testing, Cem. Concr. Res., 42, 223, 10.1016/j.cemconres.2011.10.004
Rajabipour, 2015, Alkali–silica reaction: current understanding of the reaction mechanisms and the knowledge gaps, Cem. Concr. Res., 76, 130, 10.1016/j.cemconres.2015.05.024
Labbez, 2009, Ion−ion correlation and charge reversal at titrating solid interfaces, Langmuir, 25, 7209, 10.1021/la900853e
Zubkova, 2010, Crystal structures of shlykovite and cryptophyllite: comparative crystal chemistry of phyllosilicate minerals of the mountainite family, Eur. J. Mineral., 22, 547, 10.1127/0935-1221/2010/0022-2041
Lund, 2003, Activity coefficients in sea water using Monte Carlo simulations, Mar. Chem., 80, 95, 10.1016/S0304-4203(02)00039-7
Labbez, 2007, A new Monte Carlo method for the titration of molecules and minerals, 66, 10.1007/978-3-540-75755-9_8
Torrie, 1980, Electrical double layers. I. Monte Carlo study of a uniformly charged surface, J. Chem. Phys., 73, 5807, 10.1063/1.440065
Frenkel, 2002
Abbas, 2009, Monte Carlo simulations of salt solutions: exploring the validity of primitive models, J. Phys. Chem. B, 113, 5905, 10.1021/jp808427f
Pfeiffer-Laplaud, 2015, Bimodal acidity at the amorphous silica/water interface, J. Phys. Chem. C, 119, 27354, 10.1021/acs.jpcc.5b02854
Pfeiffer-Laplaud, 2016, pKa at quartz/electrolyte interfaces, J. Phys. Chem. Lett., 7, 3229, 10.1021/acs.jpclett.6b01422
Parashar, 2018, Increased acid dissociation at the quartz/water interface, J. Phys. Chem. Lett., 9, 2186, 10.1021/acs.jpclett.8b00686
Delhorme, 2010, Acid−base properties of 2:1 clays. I. Modeling the role of electrostatics, Langmuir, 26, 9240, 10.1021/la100069g
Porus, 2011, Adsorption of monovalent and divalent cations on planar water-silica interfaces studied by optical reflectivity and Monte Carlo simulations, J. Chem. Phys., 135, 10.1063/1.3622858
Bernard, 2021, Cation exchange capacity of calcium silicate hydrates (C-S-H), Cem. Concr. Res., 143, 10.1016/j.cemconres.2021.106393
Plusquellec, 2016, Interactions between calcium silicate hydrate (C-S-H) and calcium chloride, bromide and nitrate, Cem. Concr. Res., 90, 89, 10.1016/j.cemconres.2016.08.002
Barzgar, 2020, The effect of sodium hydroxide on Al uptake by calcium silicate hydrates (CSH), J. Colloid Interface Sci., 572, 246, 10.1016/j.jcis.2020.03.057