Sorption and electrokinetic properties of ASR product and C-S-H: A comparative modelling study

Cement and Concrete Research - Tập 146 - Trang 106491 - 2021
Nicolas Krattiger1, Barbara Lothenbach1,2, Sergey V. Churakov1,3
1Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland
2Laboratory for Concrete & Construction Chemistry, Swiss Federal Laboratories for Materials Science and Technology (Empa), Ueberlandstrasse 129, 8600 Dübendorf, Switzerland
3Laboratory for Waste Management, Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232 Villigen PSI, Switzerland

Tài liệu tham khảo

Swamy, 1991 Broekmans, 2008 Ben Haha, 2007, Relation of expansion due to alkali silica reaction to the degree of reaction measured by SEM image analysis, Cem. Concr. Res., 37, 1206, 10.1016/j.cemconres.2007.04.016 Leemann, 2020, Characterization of amorphous and crystalline ASR products formed in concrete aggregates, Cem. Concr. Res., 137, 106190, 10.1016/j.cemconres.2020.106190 Shi, 2019, The role of calcium on the formation of alkali-silica reaction products, Cem. Concr. Res., 126, 105898, 10.1016/j.cemconres.2019.105898 Leemann, 2011, Alkali-silica reaction - the influence of calcium on silica dissolution and the formation of reaction products, J. Am. Ceram. Soc., 94, 1243, 10.1111/j.1551-2916.2010.04202.x Shi, 2019, Synthesis, characterization, and water uptake property of alkali-silica reaction products, Cem. Concr. Res., 121, 58, 10.1016/j.cemconres.2019.04.009 Shi, 2020, Formation of shlykovite and ASR-P1 in concrete under accelerated alkali-silica reaction at 60 and 80 °C, Cem. Concr. Res., 137, 106213, 10.1016/j.cemconres.2020.106213 Pekov, 2010, Shlykovite KCa[Si4O9(OH)] · 3H2O and cryptophyllite K2Ca[Si4O10] · 5H2O, new mineral species from the Khibiny alkaline pluton, Kola Peninsula, Russia, 52, 767 Geng, 2020, Atomistic structure of alkali-silica reaction products refined from X-ray diffraction and micro X-ray absorption data, Cem. Concr. Res., 129, 105958, 10.1016/j.cemconres.2019.105958 Shi, 2020, The combined effect of potassium, sodium and calcium on the formation of alkali-silica reaction products, Cem. Concr. Res., 127, 105914, 10.1016/j.cemconres.2019.105914 Churakov, 2009, Structure of the interlayer in normal 11 Å tobermorite from an ab initio study, Eur. J. Mineral., 21, 261, 10.1127/0935-1221/2009/0021-1865 Churakov, 2009, Structural position of H2O molecules and hydrogen bonding in anomalous 11 Å tobermorite, Am. Mineral., 94, 156, 10.2138/am.2009.2907 Richardson, 2014, Model structures for C-(A)-S-H(I), Acta Crystallogr., B70, 903 Richardson, 2008, The calcium silicate hydrates, Cem. Concr. Res., 38, 137, 10.1016/j.cemconres.2007.11.005 L’Hôpital, 2016, Alkali uptake in calcium alumina silicate hydrate (C-A-S-H), Cem. Concr. Res., 85, 122, 10.1016/j.cemconres.2016.03.009 Lothenbach, 2015, Calcium silicate hydrates: solid and liquid phase composition, Cem. Concr. Res., 78, 57, 10.1016/j.cemconres.2015.03.019 Churakov, 2017, Thermodynamics and molecular mechanism of Al incorporation in calcium silicate hydrates, J. Phys. Chem. C, 121, 4412, 10.1021/acs.jpcc.6b12850 Labbez, 2011, C-S-H/solution interface: experimental and Monte Carlo studies, Cem. Concr. Res., 41, 161, 10.1016/j.cemconres.2010.10.002 Churakov, 2014, Intrinsic acidity of surface sites in calcium-silicate-hydrates and its implication to their electrokinetic properties, J. Phys. Chem. C, 118, 11752, 10.1021/jp502514a Hong, 1999, Alkali binding in cement pastes: part I. The C-S-H phase, Cem. Concr. Res., 29, 1893, 10.1016/S0008-8846(99)00187-8 Labbez, 2006, Surface charge density and electrokinetic potential of highly charged minerals: experiments and Monte Carlo simulations on calcium silicate hydrate, J. Phys. Chem. B, 110, 9219, 10.1021/jp057096+ Vollpracht, 2016, The pore solution of blended cements: a review, Mater. Struct., 49, 3341, 10.1617/s11527-015-0724-1 Lothenbach, 2006, Thermodynamic modelling of the hydration of Portland cement, Cem. Concr. Res., 36, 209, 10.1016/j.cemconres.2005.03.001 Duchesne, 1994, The effectiveness of supplementary cementing materials in suppressing expansion due to ASR: another look at the reaction mechanisms part 2: pore solution chemistry, Cem. Concr. Res., 24, 221, 10.1016/0008-8846(94)90047-7 Shehata, 1999, The effects of fly ash composition on the chemistry of pore solution in hydrated cement pastes, Cem. Concr. Res., 29, 1915, 10.1016/S0008-8846(99)00190-8 Shehata, 2002, Use of ternary blends containing silica fume and fly ash to suppress expansion due to alkali-silica reaction in concrete, Cem. Concr. Res., 32, 341, 10.1016/S0008-8846(01)00680-9 Shi, 2018, Effects of alkali dosage and silicate modulus on alkali-silica reaction in alkali-activated slag mortars, Cem. Concr. Res., 111, 104, 10.1016/j.cemconres.2018.06.005 Lindgård, 2012, Alkali–silica reactions (ASR): literature review on parameters influencing laboratory performance testing, Cem. Concr. Res., 42, 223, 10.1016/j.cemconres.2011.10.004 Rajabipour, 2015, Alkali–silica reaction: current understanding of the reaction mechanisms and the knowledge gaps, Cem. Concr. Res., 76, 130, 10.1016/j.cemconres.2015.05.024 Labbez, 2009, Ion−ion correlation and charge reversal at titrating solid interfaces, Langmuir, 25, 7209, 10.1021/la900853e Zubkova, 2010, Crystal structures of shlykovite and cryptophyllite: comparative crystal chemistry of phyllosilicate minerals of the mountainite family, Eur. J. Mineral., 22, 547, 10.1127/0935-1221/2010/0022-2041 Lund, 2003, Activity coefficients in sea water using Monte Carlo simulations, Mar. Chem., 80, 95, 10.1016/S0304-4203(02)00039-7 Labbez, 2007, A new Monte Carlo method for the titration of molecules and minerals, 66, 10.1007/978-3-540-75755-9_8 Torrie, 1980, Electrical double layers. I. Monte Carlo study of a uniformly charged surface, J. Chem. Phys., 73, 5807, 10.1063/1.440065 Frenkel, 2002 Abbas, 2009, Monte Carlo simulations of salt solutions: exploring the validity of primitive models, J. Phys. Chem. B, 113, 5905, 10.1021/jp808427f Pfeiffer-Laplaud, 2015, Bimodal acidity at the amorphous silica/water interface, J. Phys. Chem. C, 119, 27354, 10.1021/acs.jpcc.5b02854 Pfeiffer-Laplaud, 2016, pKa at quartz/electrolyte interfaces, J. Phys. Chem. Lett., 7, 3229, 10.1021/acs.jpclett.6b01422 Parashar, 2018, Increased acid dissociation at the quartz/water interface, J. Phys. Chem. Lett., 9, 2186, 10.1021/acs.jpclett.8b00686 Delhorme, 2010, Acid−base properties of 2:1 clays. I. Modeling the role of electrostatics, Langmuir, 26, 9240, 10.1021/la100069g Porus, 2011, Adsorption of monovalent and divalent cations on planar water-silica interfaces studied by optical reflectivity and Monte Carlo simulations, J. Chem. Phys., 135, 10.1063/1.3622858 Bernard, 2021, Cation exchange capacity of calcium silicate hydrates (C-S-H), Cem. Concr. Res., 143, 10.1016/j.cemconres.2021.106393 Plusquellec, 2016, Interactions between calcium silicate hydrate (C-S-H) and calcium chloride, bromide and nitrate, Cem. Concr. Res., 90, 89, 10.1016/j.cemconres.2016.08.002 Barzgar, 2020, The effect of sodium hydroxide on Al uptake by calcium silicate hydrates (CSH), J. Colloid Interface Sci., 572, 246, 10.1016/j.jcis.2020.03.057