Sorption-Fluorimetric Determination of Quinolones in Waste and Natural Waters with a Smartphone

Moscow University Chemistry Bulletin - Tập 76 - Trang 262-268 - 2021
V. G. Amelin1,2, Z. A. Ch. Shogah1, D. S. Bolshakov2
1Vladimir State University, Vladimir, Russia
2Federal Center for Animal Health, Vladimir, Russia

Tóm tắt

A simple, affordable, and safe (green chemistry) method is proposed for determining 17 quinolone antibiotics in waste and natural waters by the sorption-fluorimetric method using a smartphone as an analyte signal recorder. The method is based on static sorption of quinolones by silica gel from aqueous solutions. When the sorbate is irradiated with ultraviolet light (365 nm), blue or turquoise fluorescence is observed, the intensity of which is measured with a smartphone. The values of the basic components of the RGB colorimetric system are used as an analytical signal, followed by the calculation of the final color. The limits of detection and quantification are 0.0007–0.004 and 0.002–0.01 μg/mL, respectively, for all analyzed analytes. The range of the determined contents is 0.002 (0.01)–0.2 μg/mL. A procedure for the determination of quinolones in waste and natural waters is proposed. The relative standard deviation of the analysis results does not exceed 0.2.

Tài liệu tham khảo

Mashkovskii, M.D., Lekarstvennye sredstva: posobie dlya vrachei (Medicines: A Guide for Doctors), Moscow: Meditsina, 2010. Gonzalez, J.A.O., Mochon, M.C., and de la Rosa, F.J.B., Talanta, 2000, vol. 52, p. 1149. Ocana, J.A., Barragan, F.J., and Callejon, M., Talanta, 2004, vol. 63, p. 691. Ocana, J.A., Barragan, F.J., and Callejon, M., J. Pharm. Biomed. Anal., 2005, vol. 37, p. 327. Guo, C., Dong, P., Chu, Z., Wang, L., and Jiang, W., Luminescence, 2008, vol. 23, p. 7. Shtykov, S.N., Smirnova, T.D., Bylinkin, Y.G., Kalashnikova, N.V., and Zhemerichkin, D.A., J. Anal. Chem., 2007, vol. 62, no. 2, p. 136. Beltyukova, S., Teslyuk, O., Egorova, A., and Tselik, E., J. Fluoresc., 2002, vol. 12, no. 2, p. 269. Egorova, A., Beltyukova, S., and Teslyuk, O., J. Pharm. Biomed. Anal., 1999, vol. 21, p. 585. Rodriguez-Diaz, R.C., Aguilar-Caballos, M.P., and Gomez-Hens, A., Anal. Chim. Acta, 2003, vol. 494, p. 55. Zhu, X., Gong, A., and Yu, S., Spectrochim. Acta, Part A, 2008, vol. 69, p. 478. Smirnova, T.D., Danilina, T.G., Rusanova, T.Yu., and Simbireva, N.A., J. Anal. Chem., 2021, vol. 76, no. 1, p. 89. Ngumba, E., Kosunen, P., Gachanja, A., and Tuhkanen, T., Anal. Methods, 2016, vol. 8, p. 6720. Deng, J., Yu, T., Yao, Y., Qi, PengQ., Luo, L., Chen, B., Wang, X., Yang, Y., and Luan, T., Anal. Chim. Acta, 2017, vol. 954, p. 52. Yu, R., Chen, L., Shen, R., Li, P., and Shi, N., Environ. Technol. Innovation, 2020, vol. 19, 100919. Monogarova, O.V., Oskolok, K.V., and Apyari, V.V., J. Anal. Chem., 2018, vol. 73, no. 11, p. 1076. Apyari, V.V., Gorbunova, M.V., Isachenko, A.I., Dmitrienko, S.G., and Zolotov, Yu.A., J. Anal. Chem., 2017, vol. 72, no. 11, p. 1127. Ivanov, V.M. and Kuznetsova, O.V., Russ. Chem. Rev., 2001, vol. 70, no. 5, p. 357. Huang, X., Xu, D., Chen, J., Liu, J., Li, Y., Song, J., Ma, X., and Guo, J., Analyst, 2018, vol. 143, p. 5339. Rezazadeh, M., Seidi, Sh., Lid, M., Pedersen-Bjergaard, S., and Yamini, Y., TrAC, Trends Anal. Chem., 2019, vol. 118, p. 548. Ferrer, C., Lozano, A., Aguera, A., Giron, A.J., and Fernandez, A.R., J. Chromatogr. A, 2011, vol. 1218, p. 7634.