Sonochemistry: Science and Engineering

Ultrasonics Sonochemistry - Tập 29 - Trang 104-128 - 2016
Nimesh Pokhrel1, Phani Kiran Vabbina1, Nezih Pala1
1Integrated Nanosystems Research Lab, Florida International University, 10555 W Flagler Street EC 3975, Miami, FL 33174, USA.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Tsakalakos, 2003

Xia, 2003, One-dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater., 15, 353, 10.1002/adma.200390087

Richards, 1927, The chemical effects of high frequency sound waves I. A preliminary survey, J. Am. Chem. Soc., 49, 3086, 10.1021/ja01411a015

Plesset, 1977, Bubble dynamics and cavitation, Annu. Rev. Fluid Mech., 9, 145, 10.1146/annurev.fl.09.010177.001045

Leighton, 1994, The acoustic bubble, J. Acoust. Soc. Am., 96, 2616, 10.1121/1.410082

Suslick, 1990, Sonochemistry, Science, 247, 1439, 10.1126/science.247.4949.1439

Suslick, 2008, Inside a collapsing bubble: sonoluminescence and the conditions during cavitation, Annu. Rev. Phys. Chem., 59, 659, 10.1146/annurev.physchem.59.032607.093739

Suslick, 2011, Extreme conditions during multibubble cavitation: sonoluminescence as a spectroscopic probe, Ultrason. Sonochem., 18, 842, 10.1016/j.ultsonch.2010.12.012

Bang, 2010, Applications of ultrasound to the synthesis of nanostructured materials, Adv. Mater., 22, 1039, 10.1002/adma.200904093

Xu, 2013, Sonochemical synthesis of nanomaterials, Chem. Soc. Rev., 42, 2555, 10.1039/C2CS35282F

Flannigan, 2005, Plasma formation and temperature measurement during single-bubble cavitation, Nature, 434, 52, 10.1038/nature03361

Didenko, 2000, Molecular emission from single-bubble sonoluminescence, Nature, 407, 877, 10.1038/35038020

Flannigan, 2005, Plasma line emission during single-bubble cavitation, Phys. Rev. Lett., 95, 10.1103/PhysRevLett.95.044301

Eddingsaas, 2007, Evidence for a plasma core during multibubble sonoluminescence in sulfuric acid, J. Am. Chem. Soc., 129, 3838, 10.1021/ja070192z

Taleyarkhan, 2002, Evidence for nuclear emissions during acoustic cavitation, Science, 295, 1868, 10.1126/science.1067589

Suslick, 1991, Sonochemical synthesis of amorphous iron, Nature, 353, 414, 10.1038/353414a0

Koltypin, 1996, Sonochemical preparation of amorphous nickel, J. Non Cryst. Solids, 201, 159, 10.1016/0022-3093(96)00184-6

Hyeon, 1996, Nanostructured molybdenum carbide: sonochemical synthesis and catalytic properties, J. Am. Chem. Soc., 118, 5492, 10.1021/ja9538187

Suslick, 1996, Nanostructured materials generated by high-intensity ultrasound: sonochemical synthesis and catalytic studies, Chem. Mater., 8, 2172, 10.1021/cm960056l

Mdleleni, 1998, Sonochemical synthesis of nanostructured molybdenum sulfide, J. Am. Chem. Soc., 120, 6189, 10.1021/ja9800333

Vabbina, 2014, Controlled synthesis of single-crystalline ZnO nanoflakes on arbitrary substrates at ambient conditions, Part. Part. Syst. Charact., 31, 190, 10.1002/ppsc.201300208

Bang, 2010, Applications of ultrasound to the synthesis of nanostructured materials, Adv. Mater., 22, 1039, 10.1002/adma.200904093

Doktycz, 1990, Interparticle collisions driven by ultrasound, Science, 247, 1067, 10.1126/science.2309118

Zeiger, 2011, Sonofragmentation of molecular crystals, J. Am. Chem. Soc., 133, 14530, 10.1021/ja205867f

Viculis, 2003, A chemical route to carbon nanoscrolls, Science, 299, 1361, 10.1126/science.1078842

Xu, 2011, Sonochemical preparation of functionalized graphenes, J. Am. Chem. Soc., 133, 9148, 10.1021/ja200883z

Wang, 2013, Preparation of two dimensional atomic crystals BN, WS2, and MoS2 by supercritical CO2 assisted with ultrasound, Ind. Eng. Chem. Res., 52, 4379, 10.1021/ie303633c

Dhas, 2005, Sonochemical preparation of hollow nanospheres and hollow nanocrystals, J. Am. Chem. Soc., 127, 2368, 10.1021/ja049494g

Lotya, 2009, Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions, J. Am. Chem. Soc., 131, 3611, 10.1021/ja807449u

Zhang, 2010, Preparation of a stable graphene dispersion with high concentration by ultrasound, J. Phys. Chem. B, 114, 10368, 10.1021/jp1037443

Suslick, 1990, Protein microencapsulation of nonaqueous liquids, J. Am. Chem. Soc., 112, 7807, 10.1021/ja00177a058

Perelshtein, 2008, Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity, Nanotechnology, 19, 245705, 10.1088/0957-4484/19/24/245705

Perelshtein, 2009, Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on fabrics, ACS Appl. Mater. Interfaces, 1, 361, 10.1021/am8000743

Gottesman, 2011, Sonochemical coating of paper by microbiocidal silver nanoparticles, Langmuir, 27, 720, 10.1021/la103401z

Suslick, 1981, Sonochemistry and sonocatalysis of iron carbonyls, J. Am. Chem. Soc., 103, 7342, 10.1021/ja00414a054

Suslick, 1983, Alkane sonochemistry, J. Phys. Chem., 87, 2299, 10.1021/j100236a013

Suslick, 1983, Sonochemistry and sonocatalysis of metal carbonyls, J. Am. Chem. Soc., 105, 5781, 10.1021/ja00356a014

Suslick, 1989, The chemical effects of ultrasound, Sci. Am., 260, 80, 10.1038/scientificamerican0289-80

Toublan, 2006, Tumor targeting by surface-modified protein microspheres, J. Am. Chem. Soc., 128, 3472, 10.1021/ja0544455

Webb, 1996, Sonochemically produced fluorocarbon microspheres: a new class of magnetic resonance imaging agent, J. Magn. Reson. Imaging, 6, 675, 10.1002/jmri.1880060417

Kumar, 2000, Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates, Chem. Mater., 12, 2301, 10.1021/cm000166z

Shi, 2013, Ultrarapid sonochemical synthesis of ZnO hierarchical structures: From fundamental research to high efficiencies up to 6.42% for quasi-solid dye-sensitized solar cells, Chem. Mater., 25, 1000, 10.1021/cm400220q

Xu, 2007, Double-stranded DNA single-walled carbon nanotube hybrids for optical hydrogen peroxide and glucose sensing, J. Phys. Chem. C, 111, 8638, 10.1021/jp0709611

Mizukoshi, 2000, Characterization and catalytic activity of core–shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method, J. Phys. Chem. B, 104, 6028, 10.1021/jp994255e

Pan, 2007, Highly luminescent zinc(II)-bis(8-hydroxyquinoline) complex nanorods: sonochemical synthesis, characterizations, and protein sensing, J. Phys. Chem. B, 111, 5767, 10.1021/jp0703049

Tsochatzidis, 2001, Determination of velocity, size and concentration of ultrasonic cavitation bubbles by the phase-Doppler technique, Chem. Eng. Sci., 56, 1831, 10.1016/S0009-2509(00)00460-7

Lauterborn, 1997, Cavitation bubble dynamics, Ultrason. Sonochem., 4, 65, 10.1016/S1350-4177(97)00009-6

Zhang, 2014, Controlled cavitation at nano/microparticle surfaces, Chem. Mater., 26, 2244, 10.1021/cm404194n

Merouani, 2013, Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles-theoretical study, Ultrason. Sonochem., 20, 815, 10.1016/j.ultsonch.2012.10.015

Kandjani, 2008, Sonochemical synthesis of ZnO nanoparticles: the effect of temperature and sonication power, Mater. Res. Bull., 43, 645, 10.1016/j.materresbull.2007.04.005

Okitsu, 2005, Sonochemical synthesis of gold nanoparticles: effects of ultrasound frequency, J. Phys. Chem. B, 109, 20673, 10.1021/jp0549374

Jung, 2008, Sonochemical preparation of shape-selective ZnO nanostructures, Cryst. Growth Des., 8, 265, 10.1021/cg070296l

Tuziuti, 2011, Influence of degree of gas saturation on multibubble sonoluminescence intensity, J. Phys. Chem. A, 115, 5089, 10.1021/jp201473q

Cui, 2012, Effect of alcohol on single-bubble sonoluminescence, Phys. Rev. E, 85, 026304, 10.1103/PhysRevE.85.026304

Lee, 2006, Effect of alcohols on the initial growth of multibubble sonoluminescence, J. Phys. Chem. B, 110, 17282, 10.1021/jp063320z

Leong, 2010, Growth of bubbles by rectified diffusion in aqueous surfactant solutions, J. Phys. Chem. C, 114, 20141, 10.1021/jp107731j

Henglein, 1992, Sonochemistry: some factors that determine the ability of a liquid to cavitate in an ultrasonic field, J. Phys. Chem., 96, 1126, 10.1021/j100182a020

Lorimer, 1987, Sonochemistry. Part 1 – the physical aspects, Chem. Soc. Rev., 16, 239, 10.1039/CS9871600239

Leong, 2014, Effect of surfactants on single bubble sonoluminescence behavior and bubble surface stability, Phys. Rev. E, 89, 043007, 10.1103/PhysRevE.89.043007

Ashokkumar, 1997, Sonoluminescence from aqueous alcohol and surfactant solutions, J. Phys. Chem. B, 101, 10845, 10.1021/jp972477b

Brotchie, 2010, Acoustic bubble sizes, coalescence, and sonochemical activity in aqueous electrolyte solutions saturated with different gases, Langmuir, 26, 12690, 10.1021/la1017104

Mizukoshi, 1997, Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution, J. Phys. Chem. B, 101, 7033, 10.1021/jp9638090

Lee, 2005, Effect of surfactants on inertial cavitation activity in a pulsed acoustic field, J. Phys. Chem. B, 109, 16860, 10.1021/jp0533271

Lee, 2005, Effect of surfactants on the rate of growth of an air bubble by rectified diffusion, J. Phys. Chem. B, 109, 14595, 10.1021/jp051758d

Tronson, 2002, Comparison of the effects of water-soluble solutes on multibubble sonoluminescence generated in aqueous solutions by 20- and 515-kHz pulsed ultrasound, J. Phys. Chem. B, 106, 11064, 10.1021/jp020363g

Lee, 2005, Determination of the size distribution of sonoluminescence bubbles in a pulsed acoustic field, J. Am. Chem. Soc., 127, 16810, 10.1021/ja0566432

Mohandes, 2013, Sonochemical synthesis of silver vanadium oxide micro/nanorods: solvent and surfactant effects, Ultrason. Sonochem., 20, 354, 10.1016/j.ultsonch.2012.05.002

Vijaya Kumar, 2001, Sonochemical preparation and characterization of nanocrystalline copper oxide embedded in poly(vinyl alcohol) and its effect on crystal growth of copper oxide, Langmuir, 17, 1406, 10.1021/la001331s

Shafi, 2001, Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles, Langmuir, 17, 5093, 10.1021/la010421+

Nemamcha, 2006, Synthesis of palladium nanoparticles by sonochemical reduction of palladium(II) nitrate in aqueous solution, J. Phys. Chem. B, 110, 383, 10.1021/jp0535801

Price, 2004, Sonoluminescence quenching of organic compounds in aqueous solution: frequency effects and implications for sonochemistry, J. Am. Chem. Soc., 126, 2755, 10.1021/ja0389624

Merouani, 2013, Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles – theoretical study, Ultrason. Sonochem., 20, 815, 10.1016/j.ultsonch.2012.10.015

Brotchie, 2009, Effect of power and frequency on bubble-size distributions in acoustic cavitation, Phys. Rev. Lett., 102, 084302, 10.1103/PhysRevLett.102.084302

Ciawi, 2006, Determination of temperatures within acoustically generated bubbles in aqueous solutions at different ultrasound frequencies, J. Phys. Chem. B, 110, 13656, 10.1021/jp061441t

Koda, 2003, A standard method to calibrate sonochemical efficiency of an individual reaction system, Ultrason. Sonochem., 10, 149, 10.1016/S1350-4177(03)00084-1

Hassanjani-Roshan, 2011, The effect of sonication power on the sonochemical synthesis of titania nanoparticles, J. Ceram. Process. Res., 12, 299

Wahab, 2007, Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical method, Appl. Surf. Sci., 253, 7622, 10.1016/j.apsusc.2007.03.060

Singh, 2007, Closed-cage clusters in the gaseous and condensed phases derived from sonochemically synthesized MoS2 nanoflakes, J. Am. Soc. Mass Spectrom., 18, 2191, 10.1016/j.jasms.2007.09.020

Wang, 2003, Sonochemical fabrication and characterization of stibnite nanorods, Inorg. Chem., 42, 6404, 10.1021/ic0342604

Xiao, 2009, Ultrasonic electrodeposition of gold–platinum alloy nanoparticles on ionic liquid-chitosan composite film and their application in fabricating nonenzyme hydrogen peroxide sensors, J. Phys. Chem. C, 113, 849, 10.1021/jp808162g

Xiao, 2009, Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M=Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film, Biosens. Bioelectron., 24, 3481, 10.1016/j.bios.2009.04.045

Prozorov, 2004, High velocity interparticle collisions driven by ultrasound, J. Am. Chem. Soc., 126, 13890, 10.1021/ja049493o

Kass, 2000, Ultrasonically induced fragmentation and strain in alumina particles, Mater. Lett., 42, 246, 10.1016/S0167-577X(99)00192-5

Wang, 2013, Preparation of two dimensional atomic crystals BN, WS2, and MoS2 by supercritical CO2 assisted with ultrasound, Ind. Eng. Chem. Res., 52, 4379, 10.1021/ie303633c

Suslick, 1989, The chemical effects of ultrasound, Sci. Am., 260, 80, 10.1038/scientificamerican0289-80

Barton, 2004, Sonochemically fabricated microelectrode arrays for biosensors offering widespread applicability: part I, Biosens. Bioelectron., 20, 328, 10.1016/j.bios.2004.02.002

Cau, 2012, Mechanism of W(CO)6 sonolysis in diphenylmethane, Ultrason. Sonochem., 19, 498, 10.1016/j.ultsonch.2011.10.003

Anandan, 2012, Sonochemical synthesis of CuO nanostructures with different morphology, Ultrason. Sonochem., 19, 682, 10.1016/j.ultsonch.2011.08.009

Srivastava, 2002, Sonochemical synthesis of mesoporous iron oxide and accounts of its magnetic and catalytic properties, J. Phys. Chem. B, 106, 1878, 10.1021/jp015532w

Johns, 1962, Thermal stability of some organic compounds, J. Chem. Eng. Data, 7, 277, 10.1021/je60013a036

Wieczorek, 1980, Vapor pressure measurements of diphenylmethane, thianaphthene, and bicyclohexyl at elevated temperatures, J. Chem. Eng. Data, 25, 302, 10.1021/je60087a010

Chellappa, 2005, Assessment of vapor pressure data of solid metal carbonyls, J. Chem. Thermodyn., 37, 377, 10.1016/j.jct.2004.10.002

Wang, 2004, Zinc oxide nanostructures: growth, properties and applications, J. Phys.: Condens. Matter, 16, R829

Aurbach, 2002, Nanoparticles of SnO produced by sonochemistry as anode materials for rechargeable lithium batteries, Chem. Mater., 14, 4155, 10.1021/cm021137m

Zhu, 2013, Sonochemical fabrication of Fe3O4 nanoparticles on reduced graphene oxide for biosensors, Ultrason. Sonochem., 20, 872, 10.1016/j.ultsonch.2012.12.001

DuBois, 1989, Catalytic applications of transition-metal complexes with sulfide ligands, Chem. Rev. (Washington, DC, United States), 89, 1, 10.1021/cr00091a001

Levy, 1973, Platinum-like behavior of tungsten carbide in surface catalysis, Science, 181, 547, 10.1126/science.181.4099.547

Nikitenko, 2004, Tailoring the properties of Fe–Fe3C nanocrystalline particles prepared by sonochemistry, J. Phys. Chem. B, 108, 7620, 10.1021/jp036376r

Machala, 2007, Amorphous iron(III) oxide – a review, J. Phys. Chem. B, 111, 4003, 10.1021/jp064992s

Oxley, 2004, Hydrodehalogenation with sonochemically prepared Mo2C and W2C, Catal. Today, 88, 139, 10.1016/j.cattod.2003.11.010

Sattler, 2014, Catalytic dehydrogenation of light alkanes on metals and metal oxides, Chem. Rev., 114, 10613, 10.1021/cr5002436

Hudson, 2005, Low-temperature sol–gel preparation of ordered nanoparticles of tungsten carbide/oxide, Ind. Eng. Chem. Res., 44, 5575, 10.1021/ie040247v

Giordano, 2008, Synthesis of Mo and W carbide and nitride nanoparticles via a simple ‘urea glass’ route, Nano Lett., 8, 4659, 10.1021/nl8018593

Shen, 2010, Preparation and performance of nanosized tungsten carbides for electrocatalysis, Electrochim. Acta, 55, 7969, 10.1016/j.electacta.2010.03.025

Alonso, 2002, Metal-mediated reductive hydrodehalogenation of organic halides, Chem. Rev., 102, 4009, 10.1021/cr0102967

Dhandapani, 1995, Novel catalysts for selective dehalogenation of CCl2F2(CFC 12), Catal. Lett., 35, 353, 10.1007/BF00807192

Delannoy, 2000, Group VI transition metal carbides as alternatives in the hydrodechlorination of chlorofluorocarbons, Catal. Today, 59, 231, 10.1016/S0920-5861(00)00289-3

Vecitis, 2010, Sonochemical degradation of perfluorooctanesulfonate in aqueous film-forming foams, Environ. Sci. Technol., 44, 432, 10.1021/es902444r

Shriwas, 2011, Intensification of degradation of 2,4,6-trichlorophenol using sonochemical reactors: understanding mechanism and scale-up aspects, Ind. Eng. Chem. Res., 50, 9601, 10.1021/ie200817u

Adewuyi, 2001, Sonochemistry: environmental science and engineering applications, Ind. Eng. Chem. Res., 40, 4681, 10.1021/ie010096l

Hoffmann, 1996, Application of ultrasonic irradiation for the degradation of chemical contaminants in water, Ultrason. Sonochem., 3, S163, 10.1016/S1350-4177(96)00022-3

Goskonda, 2002, Sonochemical degradation of aromatic organic pollutants, Waste Manag., 22, 351, 10.1016/S0956-053X(01)00035-6

Tiehm, 2005, Ultrasonic dehalogenation and toxicity reduction of trichlorophenol, Ultrason. Sonochem., 12, 121, 10.1016/j.ultsonch.2004.05.013

Serpone, 1994, Ultrasonic induced dehalogenation and oxidation of 2-, 3-, and 4-chlorophenol in air-equilibrated aqueous media. similarities with irradiated semiconductor particulates, J. Phys. Chem., 98, 2634, 10.1021/j100061a021

Koltypin, 2002, The sonochemical preparation of tungsten oxide nanoparticles, J. Mater. Chem., 12, 1107, 10.1039/b106036h

Nikitenko, 2002, Sonochemical synthesis of tungsten sulfide nanorods, J. Mater. Chem., 12, 1450, 10.1039/b110867k

Lu, 2007, Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed. Engl., 46, 1222, 10.1002/anie.200602866

Zhu, 2010, Magnetic nanocomposites: a new perspective in catalysis, ChemCatChem, 2, 365, 10.1002/cctc.200900314

Kaur, 2014, Synthesis and surface engineering of magnetic nanoparticles for environmental cleanup and pesticide residue analysis: a review, J. Sep. Sci., 37, 1805, 10.1002/jssc.201400256

Chou, 1994, Single-domain magnetic pillar array of 35nm diameter and 65 Gbits/in.2 density for ultrahigh density quantum magnetic storage, J. Appl. Phys., 76, 6673, 10.1063/1.358164

Nikitenko, 2002, Synthesis of air-stable iron–iron carbide nanocrystalline particles showing very high saturation magnetization, IEEE Trans. Magn., 38, 2592, 10.1109/TMAG.2002.803222

Nikitenko, 2001, Synthesis of highly magnetic, air-stable iron–iron carbide nanocrystalline particles by using power ultrasound, Angew. Chem. Int. Ed. Engl., 40, 4447, 10.1002/1521-3773(20011203)40:23<4447::AID-ANIE4447>3.0.CO;2-J

Koltypin, 2004, Commercial edible oils as new solvents for ultrasonic synthesis of nanoparticles: the preparation of air stable nanocrystalline iron particles, J. Mater. Chem., 14, 2975, 10.1039/b411983e

Sivakumar, 2006, Fabrication of zinc ferrite nanocrystals by sonochemical emulsification and evaporation: observation of magnetization and its relaxation at low temperature, J. Phys. Chem. B, 110, 15234, 10.1021/jp055024c

Miyatani, 2014, Mössbauer study of iron carbide nanoparticles produced by sonochemical synthesis, J. Radioanal. Nucl. Chem., 303, 1503, 10.1007/s10967-014-3507-1

Koltypin, 1999, Encapsulation of nickel nanoparticles in carbon obtained by the sonochemical decomposition of Ni(C8H12)2, Chem. Mater., 11, 1331, 10.1021/cm981111o

Meyer, 1953, The properties of nickel carbide, J. Am. Chem. Soc., 75, 10.1021/ja01098a507

Jeevanandam, 2001, Synthesis of nanosized α-nickel hydroxide by a sonochemical method, Nano Lett., 1, 263, 10.1021/nl010003p

Dhas, 2001, Sonochemical preparation of supported hydrodesulfurization catalysts, J. Am. Chem. Soc., 123, 8310, 10.1021/ja010516y

Zhong, 1999, Sonochemical coating of nanosized nickel on alumina submicrospheres and the interaction between the nickel and nickel oxide with the substrate, Chem. Mater., 11, 2350, 10.1021/cm981005m

Pol, 2002, Synthesis of europium oxide nanorods by ultrasound irradiation, J. Phys. Chem. B, 106, 9737, 10.1021/jp025864g

Yin, 2002, Sonochemical synthesis of cerium oxide nanoparticles-effect of additives and quantum size effect, J. Colloid Interface Sci., 246, 78, 10.1006/jcis.2001.8047

Abu Mukh-Qasem, 2005, Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles, J. Colloid Interface Sci., 284, 489, 10.1016/j.jcis.2004.10.073

Dhas, 1997, Characterization of sonochemically prepared unsupported and silica-supported nanostructured pentavalent molybdenum oxide, J. Phys. Chem. B, 101, 9495, 10.1021/jp971385j

Laurent, 2008, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev., 108, 2064, 10.1021/cr068445e

Dhas, 1997, Sonochemical preparation and characterization of ultrafine chromium oxide and manganese oxide powders, Chem. Mater., 9, 3159, 10.1021/cm9704645

Vijayakumar, 2000, Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles, Mater. Sci. Eng. A, 286, 101, 10.1016/S0921-5093(00)00647-X

Zhang, 2014, CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications, Prog. Mater Sci., 60, 208, 10.1016/j.pmatsci.2013.09.003

Cao, 1997, Synthesis of pure amorphous Fe2O3, J. Mater. Res., 12, 402, 10.1557/JMR.1997.0058

Zhang, 2012, Sonochemical formation of iron oxide nanoparticles in ionic liquids for magnetic liquid marble, Phys. Chem. Chem. Phys., 14, 5132, 10.1039/c2cp23675c

Gao, 2005, Sonochemical synthesis, optical properties, and electrical properties of core/shell-type ZnO nanorod/CdS nanoparticle composites, Chem. Mater., 17, 887, 10.1021/cm0485456

Kristl, 2008, Sonochemical synthesis of nanocrystalline mercury sulfide, selenide and telluride in aqueous solutions, Ultrason. Sonochem., 15, 695, 10.1016/j.ultsonch.2008.02.007

Jesionek, 2012, Sonochemical growth of antimony selenoiodide in multiwalled carbon nanotube, Ultrason. Sonochem., 19, 179, 10.1016/j.ultsonch.2011.06.006

Wu, 2004, A simple synthesis route to CdS nanomaterials with different morphologies by sonochemical reduction, Mater. Lett., 58, 794, 10.1016/j.matlet.2003.07.014

Suslick, 1996, Sonochemical synthesis of iron colloids, J. Am. Chem. Soc., 118, 11960, 10.1021/ja961807n

Zhang, 2006, Sonochemical formation of single-crystalline gold nanobelts, Angew. Chem., 118, 1134, 10.1002/ange.200503762

Sánchez-Iglesias, 2006, Synthesis and optical properties of gold nanodecahedra with size control, Adv. Mater., 18, 2529, 10.1002/adma.200600475

Liu, 2011, Rapid sonochemical synthesis of highly luminescent non-toxic AuNCs and Au@AgNCs and Cu (II) sensing, Chem. Commun. (Camb.), 47, 4237, 10.1039/c1cc00103e

Xu, 2010, Sonochemical synthesis of highly fluorescent Ag nanoclusters, ACS Nano, 4, 3209, 10.1021/nn100987k

Okitsu, 1996, Sonochemical preparation of ultrafine palladium particles, Chem. Mater., 18, 315, 10.1021/cm950285s

Mizukoshi, 1999, Preparation of platinum nanoparticles by sonochemical reduction of the Pt(II) ion, Langmuir, 15, 2733, 10.1021/la9812121

Mizukoshi, 2001, Preparation of platinum nanoparticles by sonochemical reduction of the Pt(IV) ions: role of surfactants, Ultrason. Sonochem., 8, 1, 10.1016/S1350-4177(00)00027-4

Vinodgopal, 2006, Sonochemically prepared platinum–ruthenium bimetallic nanoparticles, J. Phys. Chem. B, 110, 3849, 10.1021/jp060203v

Pol, 2003, Deposition of gold nanoparticles on silica spheres: a sonochemical approach, Chem. Mater., 15, 1111, 10.1021/cm021013+

Dhas, 1997, Sonochemical synthesis of molybdenum oxide- and molybdenum carbide-silica nanocomposites, Chem. Mater., 9, 3144, 10.1021/cm9704488

Ramesh, 1997, Sonochemical deposition and characterization of nanophasic amorphous nickel on silica microspheres, Chem. Mater., 9, 546, 10.1021/cm960390h

Shafi, 1997, Sonochemical preparation of nanosized amorphous NiFe2O4 particles, J. Phys. Chem. B, 101, 6409, 10.1021/jp970893q

Shafi, 1997, Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles, J. Mater. Chem., 7, 3445, 10.1021/cm980182k

Lee, 2007, Self-heating characteristics of cobalt ferrite nanoparticles for hyperthermia application, J. Magn. Magn. Mater., 310, 2868, 10.1016/j.jmmm.2006.11.080

Sousa, 2001, New electric double-layered magnetic fluids based on copper, nickel, and zinc ferrite nanostructures, J. Phys. Chem. B, 105, 1168, 10.1021/jp0039161

Šepelák, 2007, Nanocrystalline nickel ferrite, NiFe2O4: mechanosynthesis, nonequilibrium cation distribution, canted spin arrangement, and magnetic behavior, J. Phys. Chem. C, 111, 5026, 10.1021/jp067620s

Mclaren, 2009, Shape and size effects of ZnO nanocrystals on photocatalytic activity, J. Am. Chem. Soc., 131, 12540, 10.1021/ja9052703

Banerjee, 2012, Zinc oxide nano-particles – sonochemical synthesis, characterization and application for photo-remediation of heavy metal, Ultrason. Sonochem., 19, 85, 10.1016/j.ultsonch.2011.05.007

Nayak, 2010, Purely sonochemical route for oriented zinc oxide nanowire growth on arbitrary substrate, Proc. SPIE, 7683, 10.1117/12.851755

Li, 2014, A perspective on mesoporous TiO2 materials, Chem. Mater., 26, 287, 10.1021/cm4014859

Cheng, 2014, Enhanced photocatalytic performance of TiO2–ZnO hybrid nanostructures, Sci. Rep., 4, 4181, 10.1038/srep04181

Wang, 2000, Sonochemical synthesis of mesoporous titanium oxide with wormhole-like framework structures, Adv. Mater., 12, 1183, 10.1002/1521-4095(200008)12:16<1183::AID-ADMA1183>3.0.CO;2-X

Yu, 2002, Direct sonochemical preparation and characterization of highly active mesoporous TiO2 with a bicrystalline framework, Chem. Mater., 14, 4647, 10.1021/cm0203924

Antonelli, 1999, Synthesis of phosphorus-free mesoporous titania via templating with amine surfactants, Microporous Mesoporous Mater., 30, 315, 10.1016/S1387-1811(99)00042-6

Pugno, 2006, On the strength of the carbon nanotube-based space elevator cable: from nanomechanics to megamechanics, J. Phys.: Condens. Matter, 18, S1971

Jeong, 2004, A sonochemical route to single-walled carbon nanotubes under ambient conditions, J. Am. Chem. Soc., 126, 15982, 10.1021/ja0451867

Chiang, 2001, Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process), J. Phys. Chem. B, 105, 8297, 10.1021/jp0114891

Hu, 2003, Nitric acid purification of single-walled carbon nanotubes, J. Phys. Chem. B, 107, 13838, 10.1021/jp035719i

Sun, 2002, Templating effect of hydrogen-passivated silicon nanowires in the production of hydrocarbon nanotubes and nanoonions via sonochemical reactions with common organic solvents under ambient conditions, J. Am. Chem. Soc., 124, 14856, 10.1021/ja0283706

Li, 2005, Hydrocarbon and carbon nanostructures produced by sonochemical reactions of organic solvents on hydrogen-passivated silicon nanowires under ambient conditions, Chem. Mater., 17, 5780, 10.1021/cm050355n

Dibbern, 2006, Formation and characterization of polyglutamate core-shell microspheres, J. Am. Chem. Soc., 128, 6540, 10.1021/ja058198g

Christiansen, 1994, Lack of an immune response to Albunex, a new ultrasound contrast agent based on air-filled albumin microspheres, Int. Arch. Allergy Immunol., 104, 372, 10.1159/000236694

Crawford, 1963, A practical introduction to ultrasonic cleaning, Ultrasonics, 1, 65, 10.1016/0041-624X(63)90056-8

Macé, 2011, Functional ultrasound imaging of the brain, Nat. Methods, 8, 662, 10.1038/nmeth.1641

Moon, 1979, Application of ultrasound to organic reactions: ultrasonic catalysis on hydrolysis of carboxylic acid esters, Tetrahedron Lett., 20, 3917, 10.1016/S0040-4039(01)86464-9

Touyeras, 2005, Effects of ultrasonic irradiation on the properties of coatings obtained by electroless plating and electro plating, Ultrason. Sonochem., 12, 13, 10.1016/j.ultsonch.2004.06.002

Mitragotri, 2005, Healing sound: the use of ultrasound in drug delivery and other therapeutic applications, Nat. Rev. Drug Discov., 4, 255, 10.1038/nrd1662

Deshmukh, 2001, Ultrasound promoted C–C bond formation: Heck reaction at ambient conditions in room temperature ionic liquids, Chem. Commun., 17, 1544, 10.1039/b104532f

Askim, 2013, Optical sensor arrays for chemical sensing: the optoelectronic nose, Chem. Soc. Rev., 42, 8649, 10.1039/c3cs60179j

Gopi, 2008, Advances in nanoalumina ceramic particle fabrication using sonofragmentation, IEEE Trans. Nanotechnol., 7, 532, 10.1109/TNANO.2008.2002985

K.S. Suslick, G.J. Price, Applications of ultrasound to materials chemistry, 2003.

Kotlyar, 2007, Coating silver nanoparticles on poly(methyl methacrylate) chips and spheres via ultrasound irradiation, J. Appl. Polym. Sci., 104, 2868, 10.1002/app.25893

Rai, 2009, Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv., 27, 76, 10.1016/j.biotechadv.2008.09.002

Roe, 2008, Antimicrobial surface functionalization of plastic catheters by silver nanoparticles, J. Antimicrob. Chemother., 61, 869, 10.1093/jac/dkn034

Eby, 2009, Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical Instruments, ACS Appl. Mater. Interfaces, 1, 1553, 10.1021/am9002155

Kumar, 2008, Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil, Nat. Mater., 7, 236, 10.1038/nmat2099

Perkas, 2007, Ultrasound-assisted coating of nylon 6,6 with silver nanoparticles and its antibacterial activity, J. Appl. Polym. Sci., 104, 1423, 10.1002/app.24728

Ghule, 2006, Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study, Green Chem., 8, 1034, 10.1039/b605623g

Vabbina, 2015, Electrochemical cortisol immunosensors based on sonochemically synthesized zinc oxide 1D nanorods and 2D nanoflakes, Biosens. Bioelectron., 63, 124, 10.1016/j.bios.2014.07.026

Vigneshwaran, 2006, Functional finishing of cotton fabrics using zinc oxide-soluble starch nanocomposites, Nanotechnology, 17, 5087, 10.1088/0957-4484/17/20/008

Sander, 2014, Sonocrystallization and sonofragmentation, Ultrason. Sonochem., 21, 1908, 10.1016/j.ultsonch.2014.02.005

Wei, 1998, Structure transformation induced in natural graphite during ultrasonic fragmentation, J. Mater. Sci. Lett., 17, 1393, 10.1023/A:1026432614535

Pérez-Maqueda, 2005, Preparation of submicron talc particles by sonication, Appl. Clay Sci., 28, 245, 10.1016/j.clay.2004.01.012

Jung, 2007, A sonochemical method for fabricating aligned ZnO nanorods, Adv. Mater., 19, 749, 10.1002/adma.200601859

Wei, 2010, Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays, Nano Lett., 10, 3414, 10.1021/nl1014298

Xu, 2008, Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst, J. Am. Chem. Soc., 130, 14958, 10.1021/ja806952j

Raeymaekers, 2010, Manipulation of diamond nano-particles using bulk acoustic waves, J. Acoust. Soc. Am., 128, 2338, 10.1121/1.3508270

Chen, 2006, Reduced-temperature ethanol sensing characteristics of flower-like ZnO nanorods synthesized by a sonochemical method, Nanotechnology, 17, 4537, 10.1088/0957-4484/17/18/002

Wei, 2010, Ultrasound-radiated synthesis of PAMAM-Au nanocomposites and its application on glucose biosensor, Ultrason. Sonochem., 17, 17, 10.1016/j.ultsonch.2009.06.017

Myler, 2004, Sonochemically fabricated microelectrode arrays for biosensors – part II: modification with a polysiloxane coating, Biosens. Bioelectron., 20, 408, 10.1016/j.bios.2004.02.009

Mosadegh Sedghi, 2010, Low temperature CO and CH4 dual selective gas sensor using SnO2 quantum dots prepared by sonochemical method, Sens. Actuators B Chem., 145, 7, 10.1016/j.snb.2009.11.002

Guo, 2009, Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion, Chem. Commun. (Camb.), 3395, 10.1039/b821518a

Wang, 2010, Hierarchical tin oxide octahedra for highly efficient dye-sensitized solar cells, Chem. Eur. J., 16, 8620, 10.1002/chem.201001333

Kim, 2012, A facile, coverage controlled deposition of Au nanoparticles on ZnO nanorods by sonochemical reaction for enhancement of photocatalytic activity, J. Nanopart. Res., 14, 1, 10.1007/s11051-012-1033-z

Liu, 2012, Worm-like Ag/ZnO core–shell heterostructural composites: fabrication, characterization, and photocatalysis, J. Phys. Chem. C, 116, 16182, 10.1021/jp2115143

Brennan, 2011, Carbon nanomaterials for dye-sensitized solar cell applications: a bright future, Adv. Energy Mater., 1, 472, 10.1002/aenm.201100136

Lee, 2011, Large-scale, surfactant-free solution syntheses of Cu(In, Ga)(S, Se)2 nanocrystals for thin film solar cells, Eur. J. Inorg. Chem., 5, 647, 10.1002/ejic.201000967

Wu, 2004, Processing of alumina and zirconia nano-powders and compacts, Mater. Sci. Eng. A, 380, 349, 10.1016/j.msea.2004.04.036