Sonochemical synthesis of FeO@NH-mesoporous silica@Polypyrrole/Pd: A core/double shell nanocomposite for catalytic applications
Tài liệu tham khảo
Kim, 2008, Multifunctional uniform nanoparticles composed of magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery, Angew. Chem. Int. Ed., 47, 8438, 10.1002/anie.200802469
Fan, 2003, Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties, Angew. Chem. Int. Ed., 42, 3146, 10.1002/anie.200351027
Lee, 2011, Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications, Chem. Res., 44, 893, 10.1021/ar2000259
Meng, 2010, Multifunctional mesoporous silica material used for detection and adsorption of Cu2+ in aqueous solution and biological applications in vitro and in vivo, Adv. Funct. Mater., 20, 1903, 10.1002/adfm.201000080
Jamali, 2006, Synthesis of salicylaldehyde-modified mesoporous silica and its application as a new sorbent for separation, preconcentration and determination of uranium by inductively coupled plasma atomic emission spectrometry, Anal. Chim. Acta, 579, 68, 10.1016/j.aca.2006.07.006
Snoussi, 2016, Removal of cadmium from aqueous solutions by adsorption onto polyethylenimine-functionalized mesocellular silica foam: equilibrium properties, J. Taiwan Ins. Chem. Eng., 66, 372, 10.1016/j.jtice.2016.06.015
Saad, 2016, Ligand-modified mesoporous silica SBA-15/silver hybrids for the catalyzed reduction of Methylene Blue, RSC Adv., 6, 57672, 10.1039/C6RA12061J
Wang, 2008, Facile synthesis of ordered magnetic mesoporous γ-Fe2O3/SiO2 nanocomposites with diverse mesostructures, J. Colloid Interface Sci., 326, 158, 10.1016/j.jcis.2008.07.012
Delahaye, 2006, “Nanocasting”: using SBA-15 silicas as hard templates to obtain ultrasmall monodispersed γ-Fe2O3 nanoparticles, J. Phys. Chem. B, 110, 26001, 10.1021/jp0647075
Hodgkins, 2007, Maghemite nanocrystal impregnation by hydrophobic surface modification of mesoporous silica, Langmuir, 23, 8838, 10.1021/la063395u
Zhao, 2005, Fabrication of uniform magnetic nanocomposite, a magnetic core/mesoporous silica shell structure, J. Am. Chem. Soc., 127, 8916, 10.1021/ja051113r
Lu, 2004, Fabrication of magnetically separable mesostructured silica with an open pore system, J. Am. Chem. Soc., 126, 8616, 10.1021/ja0486521
Garcia, 2003, Mesoporous aluminosilicate materials with superparamagnetic γ-Fe2O3 particles embedded in the walls, Angew. Chem. Int. Ed., 42, 1526, 10.1002/anie.200250618
Rosenholm, 2011, Large-pore mesoporous silica-coated magnetite core-shell nanocomposites and their relevance for biomedical applications, Microporous Mesoporous Mater., 145, 14, 10.1016/j.micromeso.2011.04.022
Wu, 2004, Template-assisted synthesis of mesoporous magnetic nanocomposite particles, Adv. Funct. Mater., 14, 345, 10.1002/adfm.200305455
Abbas, 2013, Facile sonochemical synthesis of high-moment magnetite (Fe3O4) nanocube, J. Nanopart. Res., 15, 1354, 10.1007/s11051-012-1354-y
Petcharoen, 2012, Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method, Mater. Sci. Eng. B, 177, 421, 10.1016/j.mseb.2012.01.003
Yu, 2004, Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts, Chem. Commun., 2306, 10.1039/b409601k
Wang, 2010, Shape-control and characterization of magnetite prepared via a one-step solvothermal route, Cryst. Growth Design, 10, 2863, 10.1021/cg900472d
Cabrera, 2008, Magnetite nanoparticles: electrochemical synthesis and characterization, Electrochim. Acta, 53, 3436, 10.1016/j.electacta.2007.12.006
Sugimoto, 1980, Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels, J. Colloid Interface Sci., 74, 227, 10.1016/0021-9797(80)90187-3
Palani, 2010, Rapid temperature-assisted sonochemical synthesis of mesoporous silica SBA-15, Microporous Mesoporous Mater., 131, 385, 10.1016/j.micromeso.2010.01.020
Vetrivel, 2010, The ultrafast sonochemical synthesis of mesoporous silica MCM-4, New J. Chem., 34, 2109, 10.1039/c0nj00379d
Wei, 2010, Synthesis of polymer—mesoporous silica nanocomposites, Materials, 3, 4066, 10.3390/ma3074066
Farghaly, 2016, Mesoporous hybrid polypyrrole-silica nanocomposite films with a strata-like structure, Langmuir, 32, 5925, 10.1021/acs.langmuir.6b00872
Dong, 2009, Nanocomposite with polypyrrole encapsulated within SBA-15 mesoporous silica: preparation and its electrochemical application, electroanalysis, Electroanalysis, 16, 1792, 10.1002/elan.200804602
Shafiabadi, 2016, Removal of Hg(II) from aqueous solution using polypyrrole/SBA-15 nanocomposite: experimental and modeling, Synthetic Metals, 212, 154, 10.1016/j.synthmet.2015.12.020
Cho, 2009, A mesoporous silica nanosphere-based drug delivery system using an electrically conducting polymer, Nanotechnology, 20, 275102, 10.1088/0957-4484/20/27/275102
Jung, 2010, Selective polymerization of polypyrrole in silica mesopores using an in situ generated oxidizing agent on a silica surface, Chem. Commun., 46, 6566, 10.1039/c0cc01746a
Nakayama, 2002, Electrodeposition of composite films consisting of polypyrrole and mesoporous silica, Synthetic Metals, 128, 57, 10.1016/S0379-6779(01)00663-4
Saad, 2017, Polypyrrole/Ag/mesoporous silica nanocomposite particles: design by photopolymerization in aqueous medium and antibacterial activity, J. Taiwan Inst. Chem. Eng., 10.1016/j.jtice.2017.09.024
Okitsu, 1996, Formation of noble metal particles by ultrasonic irradiation, Ultrason. Sonochem., 3, S249, 10.1016/S1350-4177(96)00033-8
Perruchot, 1998, Use of aminosilane coupling agent in the synthesis of conducting, hybrid polypyrrole–silica gel particles, Surf. Interface Anal., 26, 689, 10.1002/(SICI)1096-9918(199808)26:9<689::AID-SIA416>3.0.CO;2-K
Lo, 2017, The role of diazonium interface chemistry in the design of high performance polypyrrole-coated flexible ITO sensing electrodes, Electrochem. Commun., 77, 14, 10.1016/j.elecom.2017.02.002
Omastová, 2013, Polypyrrole/silver composites prepared by single-step synthesis, Synth. Met., 166, 57, 10.1016/j.synthmet.2013.01.015
Takeoka, 2014, Nanomorphology characterization of stericallystabilized polypyrrole-palladium nanocomposite particles, Polym. J., 46, 704, 10.1038/pj.2014.44
Fujii, 2010, Synthesis and characterization of polypyrrole-palladium nanocomposite-coated latex particles and their use as a catalyst for Suzuki coupling reaction in aqueous media, Langmuir, 26, 6230, 10.1021/la9039545
Breimer, 2001, Incorporation of metal nanoparticles in photopolymerized organic conducting polymers: a mechanistic insight, Nano Lett., 1, 305, 10.1021/nl015528w
Jlassi, 2013, Novel, ternary clay/polypyrrole/silver hybrid materials through in situ photopolymerization, Colloids Surf. A: Physicochem. Eng. Asp., 439, 193, 10.1016/j.colsurfa.2013.04.005
Wu, 2007, New sensing technology for detection of the common inhalational anesthetic agent sevoflurane using conducting polypyrrole films, Sens. Actuat. B, 126, 387, 10.1016/j.snb.2007.03.026
Gniadek, 2014, Synthesis of polymer–metal nanocomposites at liquid–liquid interface supported by ultrasonic irradiation, Synth. Met., 187, 193, 10.1016/j.synthmet.2013.10.031
Park, 2005, Sonochemical synthesis of conducting polymer–metalnanoparticles nanocomposite, Electrochim. Acta, 51, 849, 10.1016/j.electacta.2005.04.052
Atobe, 2010, Selective hydrogenation by polymer-encapsulated platinum nanoparticles prepared by an easy single-step sonochemical synthesis, Ultrason. Sonochem., 17, 26, 10.1016/j.ultsonch.2009.06.002
Mahouche-Chergui, 2013, Polymer-immobilized nanoparticles, Colloids Surf. A: Physicochem. Eng. Asp., 439, 43, 10.1016/j.colsurfa.2013.04.013
Bang, 2010, Applications of ultrasound to the synthesis of nanostructured materials, Adv. Mater., 22, 1039, 10.1002/adma.200904093
Sing, 1985, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure App. Chem., 57, 603, 10.1351/pac198557040603
Lu, 2010, Principles of nanocasting, 1
Grosman, 2008, Capillary condensation in porous materials. Hysteresis and interaction without pore blocking/percolation process, Langmuir, 24, 3977, 10.1021/la703978v
Arakha, 2015, Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface, Sci. Rep., 5, 10.1038/srep14813
Karakassides, 1997, Infrared reflectance study of thermally treated Li- and Cs-Montmorillonites, Clays Clay Miner., 45, 649, 10.1346/CCMN.1997.0450504
Jiao, 2017, Improved electrochemical performance in nanoengineered pomegranate-shaped Fe3O4/RGO nanohybrids anode material, J. Mater. Sci., 52, 3233, 10.1007/s10853-016-0612-2
Sen, 2009, Mesoporous silica–magnetite nanocomposites: fabrication, characterisation and applications in biosciences, Microporous Mesoporous Mater., 120, 246, 10.1016/j.micromeso.2008.11.012
Souza, 2008, Mesoporous silica–magnetite nanocomposite synthesized by using a neutral surfactant, Nanotechnology, 19, 185603, 10.1088/0957-4484/19/18/185603
Kim, 2003, Fabrication and magnetoresistance of tunnel junctions using half-metallic Fe3O4, J. Appl. Phys., 93, 8032, 10.1063/1.1557337
Mills, 1983, A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy, J. Phys. D, 16, 723, 10.1088/0022-3727/16/5/005
NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1. Data compiled and evaluated by A. V. Naumkin, A. Kraut-Vass, S. W. Gaarenstroom, C. J. Powell, https://srdata.nist.gov/xps/EngElmSrchQuery.aspx?EType=PE&CSOpt=Retri_ex_dat&Elm=Fe. (Last accessed 6 May 2017).
Castle, 1981, 78
Boukerma, 2005, Surface properties and conductivity of bis(2-ethylhexyl) sulfosuccinate-containing polypyrrole, Appl. Surf. Sci., 249, 303, 10.1016/j.apsusc.2004.12.011
Perruchot, 2000, Chemical deposition and characterization of thin polypyrrole films on glass plates: role of organosilane treatment, Colloid Polym. Sci., 278, 1139, 10.1007/s003960000372
Jafarzadeh, 2012, Synthesis of silica–polypyrrole core–shell nanocomposite using in situ γ aminopropyltriethoxysilane (APTES)-modified nanosilica, Synth. Met., 162, 466, 10.1016/j.synthmet.2012.01.001
Sun, 2014, Catalytic hydrogenation of nitrophenols and nitrotoluenes over a palladium/graphene nanocomposite, Catal. Sci. Technol., 4, 1742, 10.1039/C4CY00048J
Chen, 2011, Removal of MO from aqueous solution using bentonite-supported nanoscale zero-valent iron, J. Colloid Interface Sci., 363, 601, 10.1016/j.jcis.2011.07.057
Tuo, 2015, Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4nano composites for catalytic reduction of nitroaromatic compounds, Sci. Rep., 5, 13515, 10.1038/srep13515
El-Sheikh, 2013, Catalytic reduction ofp-nitrophenol over preciousmetals/highly ordered mesoporous silica, New J. Chem., 37, 2399, 10.1039/c3nj00138e
Xue, 2012, Facile synthesis of highly dispersed palladium/polypyrrole nanocapsulesfor catalytic reduction ofp-nitrophenol, J. Colloid Interface Sci., 379, 89, 10.1016/j.jcis.2012.04.036
Islam, 2010, Synthesis, characterization and catalytic activities of a reusable polymer-anchored palladium(II) complex: effective catalytic hydrogenation of various organic substrates, Trans. Met. Chem., 35, 427, 10.1007/s11243-010-9345-2
Fenga, 2014, PdCu nanoparticles supported on graphene: an efficient and recyclable catalyst for reduction of nitroarenes, Tetrahedron, 70, 6100, 10.1016/j.tet.2014.04.034
Kumari, 2015, Green synthesis and applications of Au–Ag bimetallic nanoparticles, Spectrochim. Acta, Part A, 137, 185, 10.1016/j.saa.2014.08.079
Arijit, 2015, Room-temperature synthesis of air stable cobalt nanoparticles and their use as catalyst for methyl orange dye degradation, Colloids Surf., A, 482, 248, 10.1016/j.colsurfa.2015.05.011
Li, 2017, Electrospun H4SiW12O40/cellulose acetate composite nanofibrous membrane for photocatalytic degradation of tetracycline and methyl orange with different mechanism, Carbohydr. Polym., 168, 153, 10.1016/j.carbpol.2017.03.079
Malligavathy, 2017, Padiyan, Remarkable catalytic activity of Bi2O3/TiO2 nanocomposites prepared by hydrothermal method for the degradation of methyl orange, J. Nanopart. Res., 19, 144, 10.1007/s11051-017-3806-x
Arciniega, 2017, Catalytic activity of palladium nanocubes/multiwalled carbon nanotubes structures for methyl orange dye removal, Catal. Today, 282, 168, 10.1016/j.cattod.2016.06.053