Chuẩn bị sinh khối Rhizopus oryzae hỗ trợ siêu âm kiềm để loại bỏ dễ dàng kháng sinh tetracycline từ môi trường nước

Springer Science and Business Media LLC - Tập 27 - Trang 35792-35801 - 2020
Elnaz Azamateslamtalab1, Mahboobeh Madani1, Bahman Ramavandi2,3, Reza Mohammadi4
1Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
2Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
3Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
4Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

Tóm tắt

Nghiên cứu hiện tại nhằm loại bỏ phân tử kháng sinh tetracycline (TET) khỏi môi trường nước bằng cách sử dụng vật liệu hấp phụ được chuẩn bị từ sinh khối Rhizopus oryzae. Quy trình hấp phụ TET là không liên tục và sinh khối hấp phụ là nấm Rhizopus oryzae thô và đã được thay đổi bằng NaOH cùng siêu âm. Diện tích bề mặt hoạt động cụ thể cho Rhizopus oryzae thô và đã được thay đổi lần lượt là 10,38 m2/g và 20,32 m2/g. Kết quả cho thấy hiệu suất hấp phụ TET tối đa được xác định ở pH 4, nhiệt độ 25 °C, nồng độ TET ban đầu 10 mg/L, thời gian tiếp xúc 80 phút và lượng sinh khối 2 g/L. Hành vi cân bằng cho thấy mô hình Langmuir mô tả phù hợp quá trình này. Khả năng hấp phụ TET tối đa được xác định là 38,02 mg/g và 67,93 mg/g, lần lượt cho thấy rằng phương pháp sửa đổi sinh khối đã nâng cao khả năng hấp phụ sinh học. Hệ số tương quan cao hơn (R2) và RMSE thấp hơn cho động học bậc nhất giả so với các mô hình khác cho thấy khả năng mô tả hành vi của hấp phụ sinh học TET. Tham số nhiệt động lực học enthalpy (ΔH°) cho quá trình hấp phụ TET được xác định lần lượt là −63,847 kJ/mol và −85,226 kJ/mol cho Rhizopus oryzae thô và đã được sửa đổi. Do đó, có thể đề xuất rằng sinh khối Rhizopus oryzae, đặc biệt là phiên bản đã được sửa đổi, có thể được sử dụng hiệu quả để loại bỏ TET khỏi môi trường nước.

Từ khóa

#Rhizopus oryzae #tetracycline #sinh khối #hấp phụ #mô hình Langmuir #nhiệt động lực học

Tài liệu tham khảo

Ahamad T, Ruksana CAA, Naushad M, Alshehri SM (2019) Fabrication of MnFe2O4 nanoparticles embedded chitosan-diphenylureaformaldehyde resin for the removal of tetracycline from aqueous solution. Int J Biol Macromol 134:180–188. https://doi.org/10.1016/j.ijbiomac.2019.04.204 Ahmed MB, Zhou JL, Ngo HH, Guo W, Johir MAH, Sornalingam K, Sahedur Rahman M (2017) Chloramphenicol interaction with functionalized biochar in water: sorptive mechanism, molecular imprinting effect and repeatable application. Sci Total Environ 609:885–895. https://doi.org/10.1016/j.scitotenv.2017.07.239 Ahsan MA, Islam MT, Hernandez C, Castro E, Katla SK, Kim H, Lin Y, Curry ML, Gardea-Torresdey J, Noveron JC (2018) Biomass conversion of saw dust to a functionalized carbonaceous materials for the removal of tetracycline, sulfamethoxazole and bisphenol a from water. Journal of Environmental Chemical Engineering 6(4):4329–4338. https://doi.org/10.1016/j.jece.2018.06.040 Ardashiri S, Hashemi S, Ramavandi B, Dobaradaran S (2018) Modifying amygdalus scoparia biochar with MgO for eliminating tetracycline from aqueous solutions. Desalin Water Treat 111:351–360 Awad AM, Shaikh SMR, Jalab R, Gulied MH, Nasser MS, Benamor A, Adham S (2019) Adsorption of organic pollutants by natural and modified clays: a comprehensive review. Sep Purif Technol 228:115719. https://doi.org/10.1016/j.seppur.2019.115719 Bao LP, Chong CO, Mohamed SMS, Pau-Loke S, Jo-Shu C, Tau CL, Su SL, Joon CJ (2020) Conventional and emerging technologies for removal of antibiotics from wastewater. Journal of Hazardous Materials:122961. doi:https://doi.org/10.1016/j.jhazmat.2020.122961 Bonyadi Z, Kumar PS, Foroutan R, Kafaei R, Arfaeinia H, Farjadfard S, Ramavandi B (2019) Ultrasonic-assisted synthesis of Populus alba activated carbon for water defluorination: application for real wastewater. Korean J Chem Eng 36(10):1595–1603 Debnath B, Majumdar M, Bhowmik M, Bhowmik KL, Debnath A, Roy DN (2020) The effective adsorption of tetracycline onto zirconia nanoparticles synthesized by novel microbial green technology. J Environ Manag 261:110235. https://doi.org/10.1016/j.jenvman.2020.110235 Farhadi N, Tabatabaie T, Ramavandi B, Amiri F (2020) Optimization and characterization of zeolite-titanate for ibuprofen elimination by sonication/hydrogen peroxide/ultraviolet activity. Ultrason Sonochem 67:105122. https://doi.org/10.1016/j.ultsonch.2020.105122 Foroutan R, Mohammadi R, Ramavandi B (2018a) Treatment of chromium-laden aqueous solution using CaCl2-modified Sargassum oligocystum biomass: characteristics, equilibrium, kinetic, and thermodynamic studies. Korean J Chem Eng 35(1):234–245. https://doi.org/10.1007/s11814-017-0239-2 Foroutan R, Zareipour R, Mohammadi R (2018b) Fast adsorption of chromium (VI) ions from synthetic sewage using bentonite and bentonite/bio-coal composite: a comparative study. Materials Research Express 6(2):025508 Gao Y, Li Y, Zhang L, Huang H, Hu J, Shah SM, Su X (2012) Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci 368(1):540–546 Gautam S, Shandilya P, Singh VP, Raizada P, Singh P (2016) Solar photocatalytic mineralization of antibiotics using magnetically separable NiFe2O4 supported onto graphene sand composite and bentonite. Journal of Water Process Engineering 14:86–100. https://doi.org/10.1016/j.jwpe.2016.10.008 Guo Y, Yan C, Wang P, Rao L, Wang C (2020) Doping of carbon into boron nitride to get the increased adsorption ability for tetracycline from water by changing the pH of solution. Chem Eng J 387:124136. https://doi.org/10.1016/j.cej.2020.124136 Han H, Rafiq MK, Zhou T, Xu R, Mašek O, Li X (2019) A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. J Hazard Mater 369:780–796. https://doi.org/10.1016/j.jhazmat.2019.02.003 Iftekhar S, Srivastava V, Hammouda SB, Sillanpää M (2018) Fabrication of novel metal ion imprinted xanthan gum-layered double hydroxide nanocomposite for adsorption of rare earth elements. Carbohydr Polym 194:274–284. https://doi.org/10.1016/j.carbpol.2018.04.054 Kafaei R, Papari F, Seyedabadi M, Sahebi S, Tahmasebi R, Ahmadi M, Sorial GA, Asgari G, Ramavandi B (2018) Occurrence, distribution, and potential sources of antibiotics pollution in the water-sediment of the northern coastline of the Persian Gulf, Iran. Sci Total Environ 627:703–712. https://doi.org/10.1016/j.scitotenv.2018.01.305 Kaur P, Gondil VS, Chhibber S (2019) A novel wound dressing consisting of PVA-SA hybrid hydrogel membrane for topical delivery of bacteriophages and antibiotics. Int J Pharm 572:118779. https://doi.org/10.1016/j.ijpharm.2019.118779 Kong Q, Wang Y-n, Shu L, M-s M (2016) Isotherm, kinetic, and thermodynamic equations for cefalexin removal from liquids using activated carbon synthesized from loofah sponge. Desalin Water Treat 57(17):7933–7942 Kovalakova P, Cizmas L, McDonald TJ, Marsalek B, Feng M, Sharma VK (2020) Occurrence and toxicity of antibiotics in the aquatic environment: a review. Chemosphere 251:126351. https://doi.org/10.1016/j.chemosphere.2020.126351 Leng L, Wei L, Xiong Q, Xu S, Li W, Lv S, Lu Q, Wan L, Wen Z, Zhou W (2020) Use of microalgae based technology for the removal of antibiotics from wastewater: a review. Chemosphere 238:124680. https://doi.org/10.1016/j.chemosphere.2019.124680 Li H, Hu J, Yao L, Shen Q, An L, Wang X (2020a) Ultrahigh adsorbability towards different antibiotic residues on fore-modified self-functionalized biochar: competitive adsorption and mechanism studies. J Hazard Mater 390:122127. https://doi.org/10.1016/j.jhazmat.2020.122127 Li Z, Liu Y, Zou S, Lu C, Bai H, Mu H, Duan J (2020c) Removal and adsorption mechanism of tetracycline and cefotaxime contaminants in water by NiFe2O4-COF-chitosan-terephthalaldehyde nanocomposites film. Chem Eng J 382:123008. https://doi.org/10.1016/j.cej.2019.123008 Liu M, Hou L-a YS, Xi B, Zhao Y, Xia X (2013) MCM-41 impregnated with a zeolite precursor: synthesis, characterization and tetracycline antibiotics removal from aqueous solution. Chem Eng J 223:678–687. https://doi.org/10.1016/j.cej.2013.02.088 Mohammed AA, Kareem SL (2019) Adsorption of tetracycline fom wastewater by using pistachio shell coated with ZnO nanoparticles: equilibrium, kinetic and isotherm studies. Alexandria Engineering Journal 58(3):917–928. https://doi.org/10.1016/j.aej.2019.08.006 Mohammed AA, Al-Musawi TJ, Kareem SL, Zarrabi M, Al-Ma'abreh AM (2020) Simultaneous adsorption of tetracycline, amoxicillin, and ciprofloxacin by pistachio shell powder coated with zinc oxide nanoparticles. Arab J Chem 13(3):4629–4643. https://doi.org/10.1016/j.arabjc.2019.10.010 Mohseni-Bandpi A, Al-Musawi TJ, Ghahramani E, Zarrabi M, Mohebi S, Vahed SA (2016) Improvement of zeolite adsorption capacity for cephalexin by coating with magnetic Fe3O4 nanoparticles. J Mol Liq 218:615–624 Naeimi B, Foroutan R, Ahmadi B, Sadeghzadeh F, Ramavandi B (2018) Pb (II) and Cd (II) removal from aqueous solution, shipyard wastewater, and landfill leachate by modified Rhizopus oryzae biomass. Materials Research Express 5(4):045501 Qin H, Hu T, Zhai Y, Lu N, Aliyeva J (2020) The improved methods of heavy metals removal by biosorbents: a review. Environ Pollut 258:113777. https://doi.org/10.1016/j.envpol.2019.113777 Ramavandi B, Akbarzadeh S (2015) Removal of metronidazole antibiotic from contaminated water using a coagulant extracted from Plantago ovata. Desalin Water Treat 55(8):2221–2228. https://doi.org/10.1080/19443994.2014.928909 Ramavandi B, Farjadfard S, Ardjmand M (2014) Mitigation of orange II dye from simulated and actual wastewater using bimetallic chitosan particles: continuous flow fixed-bed reactor. Journal of Environmental Chemical Engineering 2(3):1776–1784. https://doi.org/10.1016/j.jece.2014.07.023 Ranjbari S, Tanhaei B, Ayati A, Khadempir S, Sillanpää M (2020) Efficient tetracycline adsorptive removal using tricaprylmethylammonium chloride conjugated chitosan hydrogel beads: mechanism, kinetic, isotherms and thermodynamic study. Int J Biol Macromol 155:421–429. https://doi.org/10.1016/j.ijbiomac.2020.03.188 Sebastian J, Rouissi T, Brar SK, Hegde K, Verma M (2019) Microwave-assisted extraction of chitosan from Rhizopus oryzae NRRL 1526 biomass. Carbohydr Polym 219:431–440. https://doi.org/10.1016/j.carbpol.2019.05.047 Singh R (2020) Recycling of agricultural waste for wastewater treatment. In: Hashmi S, Choudhury IA (eds) Encyclopedia of renewable and sustainable materials. Elsevier, Oxford, pp 514–519. https://doi.org/10.1016/B978-0-12-803581-8.11444-4 Tasar OC, Erdal S, Taskin M (2016) Chitosan production by psychrotolerant Rhizopus oryzae in non-sterile open fermentation conditions. Int J Biol Macromol 89:428–433. https://doi.org/10.1016/j.ijbiomac.2016.05.007 Tavasol F, Tabatabaie T, Ramavandi B, Amiri F (2020) Design a new photocatalyst of sea sediment/titanate to remove cephalexin antibiotic from aqueous media in the presence of sonication/ultraviolet/hydrogen peroxide: pathway and mechanism for degradation. Ultrason Sonochem 65:105062. https://doi.org/10.1016/j.ultsonch.2020.105062 Thayyath SA, Peethambaran LD, Jayachandran N (2015) Utilization of polypyrrole coated iron-doped titania based hydrogel for the removal of tetracycline hydrochloride from aqueous solutions: adsorption and photocatalytic degradation studies. Environmental Nanotechnology, Monitoring & Management 4:106–117. https://doi.org/10.1016/j.enmm.2015.10.001 Wang T, Pan X, Ben W, Wang J, Hou P, Qiang Z (2017) Adsorptive removal of antibiotics from water using magnetic ion exchange resin. J Environ Sci 52:111–117. https://doi.org/10.1016/j.jes.2016.03.017 Wang T, Ai S, Zhou Y, Luo Z, Dai C, Yang Y, Zhang J, Huang H, Luo S, Luo L (2018) Adsorption of agricultural wastewater contaminated with antibiotics, pesticides and toxic metals by functionalized magnetic nanoparticles. Journal of Environmental Chemical Engineering 6(5):6468–6478. https://doi.org/10.1016/j.jece.2018.10.014 Xiang W, Wan Y, Zhang X, Tan Z, Xia T, Zheng Y, Gao B (2020) Adsorption of tetracycline hydrochloride onto ball-milled biochar: governing factors and mechanisms. Chemosphere 255:127057. https://doi.org/10.1016/j.chemosphere.2020.127057 Yan L, Liu Y, Zhang Y, Liu S, Wang C, Chen W, Liu C, Chen Z, Zhang Y (2020) ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline. Bioresour Technol 297:122381. https://doi.org/10.1016/j.biortech.2019.122381 Zeng Z, Ye S, Wu H, Xiao R, Zeng G, Liang J, Zhang C, Yu J, Fang Y, Song B (2019) Research on the sustainable efficacy of g-MoS2 decorated biochar nanocomposites for removing tetracycline hydrochloride from antibiotic-polluted aqueous solution. Sci Total Environ 648:206–217 Zhang X, Zhang Y, Ngo HH, Guo W, Wen H, Zhang D, Li C, Qi L (2020) Characterization and sulfonamide antibiotics adsorption capacity of spent coffee grounds based biochar and hydrochar. Sci Total Environ 716:137015. https://doi.org/10.1016/j.scitotenv.2020.137015