Some unique characteristics of atmospheric interannual variability in rainfall time series over India and the United Kingdom

Advances in Atmospheric Sciences - Tập 12 - Trang 377-385 - 1995
A. Mary Selvam1, J. S. Pethkar1, M. K. Kulkarni1
1Indian Institute of Tropical Meteorology, Pune, India

Tóm tắt

Continuous periodogram analyses of two 50-years (1871–1920 and 1936–1985) of summer monsoon rainfall over the Indian region and one 84-years set (1893–1976) of winter half-year rainfall over England and Wales show that the power spectra of disparate rainfall regimes follow the universal and unique inverse power law form of the statistical normal distribution with the percentage contribution to total variance representating the eddy probability corresponding to the normalized standard deviation equal to [(log L/logT 50)−1] whereL is the period in years andT 50 the period up to which the cumulative percentage contribution to total variance is equal to 50. The above results are consistent with a recently developed non-deterministic cell dynamical system model for atmospheric flows. The implications of the above results for prediction of interannual variability of rainfall is discussed.

Tài liệu tham khảo

Barnett, T. P. (1991), The interaction of multiple time scales in the tropical climate system,J. Climate 4: 269–285. Bak, P.C., Tang C., and Wiesenfeld K. (1988), Self-organized criticality,Phy. Rev. A.,38: 364–374. Burroughs, W. J. (1992),Weather Cycles: Real or Imaginary? (Cambridge University Press, U. K.) pp. 197. Jenkinson, A. F. (1977),A powerful elementary method of spectral analysis for use with monthly, seasonal or annual meteorological time series. (U. K. Meteorol. Office) Met O 13 Branch Memorandum No.57, 1–23. Lamb, H.H. (1972),Climate: present, past, future, Vol.1 Fundamentals and Climate Now, Methuen and Co. Ltd. London, pp. 613. Lorenz, E.N. (1990), Can chaos and Intransitivity lead to interannual variability?Tellus 42A: 378–389. Lovejoy, S. and Schertzer, D. (1986), Scale invariance, symmetries, fractals and stochastic simulations of atmospheric phenomena,Bull. Amer. Meteorol. Soc,67: 21–32. Mary Selvam, A., Deterministic chaos, fractals and quantum-like mechanics in atmospheric flows.Can. J. Phys,68: 831–841. Mary Selvam, A., Pethkar J. S. and Kulkarni M. K. (1992), Signatures of a universal spectrum for atmospheric interannual variabioity in rainfall time series over the Indian region,Int’l. J. Climatol.,12: 137–152. Mary Selvam, A. (1993), A universal spectrum for interannual variability of monsoon rainfall over India,Adv. Atmos. Sci.,10: 221–226. Oona, Y., and Puri S. (1988), Study of phase separation dynamics by use of cell dynamical systems.J. Modelling, Phys. Rev. A.,38:(1) 434–453. Parthasarathy, B., Sontakke N. A., Munot A. A. and Kothawale N. R. (1987), Droughts/floods in the summer monsoon season over different meteorological sub-divisions of India for the period 1871–1984J. Climatology,7: 57–70. Philander, S.G. (1990),El Nino, La Nina and the Southern Oscillation. (Academic Press, NY) International Geophysical Series 46, pp. 291. Selvam, A. M. and Radhamani M. (1994), Signatures of a universal sepctrum for nonlinear variability in daily columnaer total ozone content,Adv. Atmos. Sci.,11: 335–342. Selvam, A. M. and Joshi R. R. (1995), Universal spectrum for interannual variability in COADS air and sea surface temperatures,Int’l. J. Climatol., (in press). Spiegel, M.R. (1961),Statistics, McGraw-Hill book Co., NY pp.359. Tessier, Y., Lovejoy S. and Schertzer D. (1993), Universal multifractals: theory and observations for rain and clouds.J. Appl. Meteorol.,32: 223–250. Tsonis, A. A. and Eisner J.B. (1990), Multiple attractors, fractal basins and longterm climate dynamics.Beitr. Phys. Atmosph.,63(3/4): 171–176. Townsend, A. A. (1956),The Structure of Turbulent Shear Flow, Cambridge University Press, U. K., pp.130.