Some trace inequalities for exponential and logarithmic functions

Eric A. Cárlen1, Élliott H. Lieb2
1Department of Mathematics, Hill Center, Rutgers University, Piscataway, USA
2Departments of Mathematics and Physics, Princeton University, Princeton, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ando, T.: Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra Appl. 26, 203–241 (1979)

Ando, T., Hiai, F.: Log majorization and complementary Golden–Thompson type inequalities. Linear Algebra Appl. 197, 113–131 (1994)

Araki, H.: Golden–Thompson and Peierls–Bogoliubov inequalities for a general von Neumann algebra. Commun. Math. Phys. 34, 167–178 (1973)

Araki, H.: On an inequality of Lieb and Thirring. Lett. Math. Phys. 19, 167–170 (1990)

Bapat, R.B., Sunder, V.S.: On majorization and Schur products. Linear Algebra Appl. 72, 107–117 (1995)

Belavkin, V.P., Staszewski, P.: $$C^*$$C∗-algebraic generalization of relative entropy and entropy. Ann. Inst. Henri Poincaré Sect. A 37, 51–58 (1982)

Bhatia, R., Holbrook, J.: Riemannian geometry and matrix geometric means. Linear Algebra Appl. 181, 594–168 (1993)

Bogoliubov, N.N.: On a variational principle in the many body problem. Soviet Phys. Doklady 3, 292 (1958)

Carlen, E.A., Lieb, E.H.: A Minkowski-type trace inequality and strong subadditivity of quantum entropy II: convexity and concavity. Lett. Math. Phys. 83, 107–126 (2008)

Choi, M.D.: Positive linear maps on $$C^*$$C∗ algebras. Can. J. Math. 24, 520–529 (1972)

Choi, M.D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975)

Csiszár, I.: Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar. 2, 299–318 (1967)

Davis, C.: Various averaging operations onto subalgebras. Ill. J. Math. 3, 528–553 (1959)

Donald, M.J.: On the relative entropy. Commun. Math. Phys. 105, 13–34 (1986)

Frenk, J.B.G., Kassay, G., Kolumbán, J.: On equivalent results in minimax theory. Eur. J. Oper. Res. 157, 46–58 (2004)

Frieedland, S., So, W.: On the product of matrix exponentials. Lin. alg. Appl. 196, 193–205 (1994)

Fujii, J.I., Kamei, E.: Relative operator entropy in noncommutative information theory. Math. Japon. 34, 341–348 (1989)

Hansen, F.: Quantum entropy derived from first principles. J. Stat. Phys. 165, 799–808 (2016)

Hardy, G.H., Littlewood, J.E., Pólya, G.: Some simple inequalities satisfied by convex functions. Messenger Math 58(145–152), 310 (1929)

Hiai, F.: Equality cases in matrix norm inequalities of Golden–Thompson type. Linear Multilinear Algebra 36, 239–249 (1994)

Hiai, F., Ohya, M., Tsukada, M.: Sufficiency, KMS condition, and relative entropy in von Neumann algebras. Pac. J. Math. 96, 99–109 (1981)

Hiai, F., Petz, D.: The proper formula for relative entropy and its asymptotics in quantum probability. Commun. Math. Phys. 413, 99–114 (2006)

Hiai, F., Petz, D.: The Golden–Thompson trace inequality is complemented. Linear Algebra Appl. 181, 153–185 (1993)

Kiefer, J.: Optimum experimental designs. J. R. Stat. Soc. Ser. B 21, 272–310 (1959)

Klein, O.: Zur Quantenmechanischen Begründung des zweiten Hauptsatzes der Wärmelehre Z. Physik 72, 767–775 (1931)

Kubo, F., Ando, T.: Means of positive linear operators. Math. Ann. 246, 205–224 (1980)

Kuhn, H.W., Tucker, A.W.: John von Neumann’s work in the theory of games and mathematical economics. Bull. Am. Math. Soc. 64, 100–122 (1958)

Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1951), 79–86 (1951)

Kullback, S.: Lower bound for discrimination information in terms of variation. IEEE Trans. Inf. Theory 13, 126–127. Correction 16(1970), 652 (1967)

Lieb, E.H.: Convex trace functions and the Wigner–Yanase–Dyson conjecture. Adv. Math. 11, 267–288 (1973)

Lieb, E.H., Ruskai, M.B.: Some operator inequalities of the Schwarz type. Adv. Math. 12, 269–273 (1974)

Lindblad, G.: Expectations and entropy inequalities for finite quantum systems. Comm. Math. Phys. 39, 111–119 (1974)

Moakher, M.: A differential geometric approach to the geometric mean of symmetric positive definite matrices. SIAM J. Matrix Anal. Appl. 26, 735–747 (2005)

Peck, J.E.L., Dumage, A.L.: Games on a compact set. Canadian Journal of Mathematics 9, 450–458 (1957)

Pinsker, M.S.: Information and Information Stability of Random Variables and Processes. Holden Day (1964)

Pusz, W., Woronowicz, S.L.: Functional calculus for sesquilinear forms and the purification map. Rep. Math. Phys. 8, 159–170 (1975)

Pusz, W., Woronowicz, S.L.: Form convex functions and the WYDL and other inequalities. Lett. Math. Phys. 2, 505–512 (1978)

Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

Sion, M.: On general minimax theorems. Pac. J. Math. 8, 171–175 (1958)

Skovgaard, L.T.: A Riemannian geometry of the multivariate normal model. Scand. J. Statistics 11, 211–223 (1984)

Tropp, J.: From joint convexity of quantum relative entropy to a concavity theorem of Lieb. Proc. Am. Math. Soc. 140, 1757–1760 (2012)

Uhlmann, A.: Relative entropy and the Wigner–Yanase–Dyson–Lieb concavity in an interpolation theory. Commun. Math. Phys. 54, 21–32 (1977)

Umegaki, H.: Conditional expectation in an operator algebra, IV (entropy and information). Kodai Math. Sem. Rep. 14, 59 85 (1962)

Von Neumann, J.: Zur Theorie der Gesellschaftsspiele. Math. Annalen. 100, 295–320 (1928)