Some trace inequalities for exponential and logarithmic functions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ando, T.: Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra Appl. 26, 203–241 (1979)
Ando, T., Hiai, F.: Log majorization and complementary Golden–Thompson type inequalities. Linear Algebra Appl. 197, 113–131 (1994)
Araki, H.: Golden–Thompson and Peierls–Bogoliubov inequalities for a general von Neumann algebra. Commun. Math. Phys. 34, 167–178 (1973)
Bapat, R.B., Sunder, V.S.: On majorization and Schur products. Linear Algebra Appl. 72, 107–117 (1995)
Belavkin, V.P., Staszewski, P.: $$C^*$$C∗-algebraic generalization of relative entropy and entropy. Ann. Inst. Henri Poincaré Sect. A 37, 51–58 (1982)
Bhatia, R., Holbrook, J.: Riemannian geometry and matrix geometric means. Linear Algebra Appl. 181, 594–168 (1993)
Bogoliubov, N.N.: On a variational principle in the many body problem. Soviet Phys. Doklady 3, 292 (1958)
Carlen, E.A., Lieb, E.H.: A Minkowski-type trace inequality and strong subadditivity of quantum entropy II: convexity and concavity. Lett. Math. Phys. 83, 107–126 (2008)
Choi, M.D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975)
Csiszár, I.: Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar. 2, 299–318 (1967)
Davis, C.: Various averaging operations onto subalgebras. Ill. J. Math. 3, 528–553 (1959)
Frenk, J.B.G., Kassay, G., Kolumbán, J.: On equivalent results in minimax theory. Eur. J. Oper. Res. 157, 46–58 (2004)
Fujii, J.I., Kamei, E.: Relative operator entropy in noncommutative information theory. Math. Japon. 34, 341–348 (1989)
Hardy, G.H., Littlewood, J.E., Pólya, G.: Some simple inequalities satisfied by convex functions. Messenger Math 58(145–152), 310 (1929)
Hiai, F.: Equality cases in matrix norm inequalities of Golden–Thompson type. Linear Multilinear Algebra 36, 239–249 (1994)
Hiai, F., Ohya, M., Tsukada, M.: Sufficiency, KMS condition, and relative entropy in von Neumann algebras. Pac. J. Math. 96, 99–109 (1981)
Hiai, F., Petz, D.: The proper formula for relative entropy and its asymptotics in quantum probability. Commun. Math. Phys. 413, 99–114 (2006)
Hiai, F., Petz, D.: The Golden–Thompson trace inequality is complemented. Linear Algebra Appl. 181, 153–185 (1993)
Kiefer, J.: Optimum experimental designs. J. R. Stat. Soc. Ser. B 21, 272–310 (1959)
Klein, O.: Zur Quantenmechanischen Begründung des zweiten Hauptsatzes der Wärmelehre Z. Physik 72, 767–775 (1931)
Kuhn, H.W., Tucker, A.W.: John von Neumann’s work in the theory of games and mathematical economics. Bull. Am. Math. Soc. 64, 100–122 (1958)
Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1951), 79–86 (1951)
Kullback, S.: Lower bound for discrimination information in terms of variation. IEEE Trans. Inf. Theory 13, 126–127. Correction 16(1970), 652 (1967)
Lieb, E.H.: Convex trace functions and the Wigner–Yanase–Dyson conjecture. Adv. Math. 11, 267–288 (1973)
Lieb, E.H., Ruskai, M.B.: Some operator inequalities of the Schwarz type. Adv. Math. 12, 269–273 (1974)
Lindblad, G.: Expectations and entropy inequalities for finite quantum systems. Comm. Math. Phys. 39, 111–119 (1974)
Moakher, M.: A differential geometric approach to the geometric mean of symmetric positive definite matrices. SIAM J. Matrix Anal. Appl. 26, 735–747 (2005)
Peck, J.E.L., Dumage, A.L.: Games on a compact set. Canadian Journal of Mathematics 9, 450–458 (1957)
Pinsker, M.S.: Information and Information Stability of Random Variables and Processes. Holden Day (1964)
Pusz, W., Woronowicz, S.L.: Functional calculus for sesquilinear forms and the purification map. Rep. Math. Phys. 8, 159–170 (1975)
Pusz, W., Woronowicz, S.L.: Form convex functions and the WYDL and other inequalities. Lett. Math. Phys. 2, 505–512 (1978)
Skovgaard, L.T.: A Riemannian geometry of the multivariate normal model. Scand. J. Statistics 11, 211–223 (1984)
Tropp, J.: From joint convexity of quantum relative entropy to a concavity theorem of Lieb. Proc. Am. Math. Soc. 140, 1757–1760 (2012)
Uhlmann, A.: Relative entropy and the Wigner–Yanase–Dyson–Lieb concavity in an interpolation theory. Commun. Math. Phys. 54, 21–32 (1977)
Umegaki, H.: Conditional expectation in an operator algebra, IV (entropy and information). Kodai Math. Sem. Rep. 14, 59 85 (1962)