Some robustness assessments of Moran eigenvector spatial filtering

Spatial Statistics - Tập 22 - Trang 155-179 - 2017
Daniel A. Griffith1
1University of Texas at Dallas, United States

Tài liệu tham khảo

Arcuti, 2013, Spatio-temporal modelling of zero-inflated deep-sea shrimp data by Tweedie generalized additive models, Statistica, 73, 87 Atkinson, A., 1985. Plots, Transformations and Regression. NY: Oxford. Augustin, 2013, Space-time modelling of blue ling for fisheries stock management, Environmetrics, 24, 109, 10.1002/env.2196 Bentkus, 1996, A Berry-Esséen bound for student’s statistic in the non-i.i.d. case, J. Theoret. Probab., 9, 765, 10.1007/BF02214086 Boots, 1988, Incorporating the effects of spatial structure in discrete choice models of migration, J. Reg. Sci., 28, 495, 10.1111/j.1467-9787.1988.tb01370.x Burden, 2015, The SAR model for very large datasets: a reduced rank approach, Econometrics, 3, 317, 10.3390/econometrics3020317 Chaidee, 2009, Berry-Esséen bounds for random sums of non-i.i.d. random variables, Int. Math. Forum, 4, 1281 Chun, 2011, Modeling network autocorrelation in space–time migration flow data: An eigenvector spatial filtering approach, Ann. AAG, 101, 523 Chun, 2013 Chun, 2014, A quality assessment of eigenvector spatial filtering based parameter estimates for the normal probability model, Spat. Stat., 10, 1, 10.1016/j.spasta.2014.04.001 de Jong, 1984, On extreme values of Moran’s I and Geary’s c, Geogr. Anal., 16, 17, 10.1111/j.1538-4632.1984.tb00797.x Dray, 2006, Spatial-modelling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM), Ecol. Modell., 196, 483, 10.1016/j.ecolmodel.2006.02.015 Elhorst, 2014, Competition in research activity among economic departments: evidence by negative spatial autocorrelation, Geogr. Anal., 46, 104, 10.1111/gean.12031 Farber, 2009, Topology and dependency tests in spatial and network autoregressive models, Geogr. Anal., 41, 158, 10.1111/j.1538-4632.2009.00751.x Garcia, 2012, A simple procedure for the comparison of covariance matrices, BMC Evol. Biol., 12, 222, 10.1186/1471-2148-12-222 Griffith, 1978 Griffith, 1988 Griffith, 1992, What is spatial autocorrelation? Reflections on the past 25 years of spatial statistics, Espace Géographique, 21, 265, 10.3406/spgeo.1992.3091 Griffith, 1996, Spatial autocorrelation and eigenfunctions of the geographic weights matrix accompanying geo-referenced data, Can. Geogr., 40, 351, 10.1111/j.1541-0064.1996.tb00462.x Griffith, 2000, Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses, Linear Algebra Appl., 321, 95, 10.1016/S0024-3795(00)00031-8 Griffith, 2002, A spatial filtering specification for the auto-Poisson model, Statist. Probab. Lett., 58, 245, 10.1016/S0167-7152(02)00099-8 Griffith, 2003 Griffith, 2004, A spatial filtering specification for the auto-logistic model, Environ. Plann. A, 36, 1791, 10.1068/a36247 Griffith, 2008, Spatial filtering-based contributions to a critique of geographically weighted regression (GWR), Environ. Plann. A, 40, 2751, 10.1068/a38218 Griffith, D., 2017. Generating random connected planar graphs, (unpublished) manuscript. Richardson, TX: University of Texas at Dallas. Griffith, 2010, Detecting negative spatial autocorrelation in georeferenced random variables, Int. J. Geogr. Inf. Sci., 24, 417, 10.1080/13658810902832591 Griffith, 2016, Evaluating eigenvector spatial filter corrections for omitted georeferenced variables, Econometrics, 4, 29, 10.3390/econometrics4020029 Griffith, 2012, Chapter 1: Deriving space-time variograms from space-time autoregressive (STAR) model specifications, 3 Hasan, 2011 Hughes, 2013, Dimension reduction and alleviation of confounding for spatial generalized linear mixed models, J. Roy. Statist. Soc. Ser. B, 75, 139, 10.1111/j.1467-9868.2012.01041.x Kao, Y.-H., Bera, A., 2013. Spatial regression: the curious case of negative spatial dependence, In: Paper Presented at the IV International Scientific Conference: Spatial Econometrics and Regional Economic Analysis, Lodz, Poland, June 13–14, 2016; https://www.maxwell.syr.edu/uploadedFiles/cpr/events/cpr_camp_econometrics/papers2013/Kao_Bera.pdf. Kendal, 2002, Spatial aggregation of the colorado potato beetle described by an exponential dispersion model, Ecol. Modell., 151, 261, 10.1016/S0304-3800(01)00494-X Miller, 2013, Spatial models for distance sampling data: recent developments and future directions, Methods Ecol. Evol., 4, 1001, 10.1111/2041-210X.12105 Nychka, 2002, Multiresolution models for nonstationary spatial covariance functions, Stat. Model., 2, 315, 10.1191/1471082x02st037oa Patuelli, R.D. Griffith, Tiefelsdorf, M., Nijkamp, P., 2006. The use of spatial filtering techniques: the spatial and space-time structure of German unemployment data, Discussion Paper # 06-049/3, Tinbergen Institute, Amsterdam, The Netherlands. Spielman, S.E., 2012. Exceptions to the law: negative spatial autocorrelation in egocentric spatial analysis. In: Paper Presented at GIScience 2012: The 7th International Conference on Geographic Information Science, Columbus, Ohio, September 18–21. Stakhovych, 2009, Specification of spatial models: a simulation study of weights matrices, Pap. Reg. Sci., 88, 389, 10.1111/j.1435-5957.2008.00213.x Thayn, 2013, Accounting for spatial autocorrelation in linear regression models using spatial filtering with eigenvectors, Ann. AAG, 103, 47 Tiefelsdorf, 1995, The exact distribution of Moran’s I, Environ. Plann. A, 27, 985, 10.1068/a270985 Tiefelsdorf, 2007, Semi-parametric filtering of spatial autocorrelation: the eigenvector approach, Environ. Plann. A, 39, 1193, 10.1068/a37378 Tiefelsdorf, 1999, A variance stabilizing coding scheme for spatial link matrices, Environ. Plann. A, 31, 165, 10.1068/a310165