Some results on a doubly truncated generalized discrimination measure

Institute of Mathematics, Czech Academy of Sciences - Tập 61 Số 5 - Trang 585-605 - 2016
Suchandan Kayal, Rajesh Moharana1
1Department of Mathematics, National Institute of Technology, Rourkela, Rourkela, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Q. A. Al-Rahman, I. Kittaneh: A measure of discrimination between two double truncated distributions. Commun. Stat., Theory Methods 44 (2015), 1797–1805.

M. Asadi, N. Ebrahimi, G. G. Hamedani, E. S. Soofi: Minimum dynamic discrimination information models. J. Appl. Probab. 42 (2005), 643–660.

M. Asadi, N. Ebrahimi, E. S. Soofi: Dynamic generalized information measures. Stat. Probab. Lett. 71 (2005), 85–98.

R. A. Betensky, E. C. Martin: Commentary: failure-rate functions for doubly-truncated random variables. IEEE Trans. Reliab. 52 (2003), 7–8.

A. Di Crescenzo, M. Longobardi: A measure of discrimination between past lifetime distributions. Stat. Probab. Lett. 67 (2004), 173–182.

N. Ebrahimi, S. N. U. A. Kirmani: A characterisation of the proportional hazards model through a measure of discrimination between two residual life distributions. Biometrika 83 (1996), 233–235.

N. Ebrahimi, S. N. U. A. Kirmani: A measure of discrimination between two residual life-time distributions and its applications. Ann. Inst. Stat. Math. 48 (1996), 257–265.

S. Kayal: Some results on dynamic discrimination measures of order (α, β). Hacet. J. Math. Stat. 44 (2015), 179–188.

S. Kullback, R. A. Leibler: On information and sufficiency. Ann. Math. Stat. 22 (1951), 79–86.

C. Kundu: Generalized measures of information for truncated random variables. Metrika 78 (2015), 415–435.

F. Misagh, G. Yari: A novel entropy based measure of uncertainty to lifetime distributions characterizations. Proc. ICMS 10, Ref. No. 100196, Sharjah, UAE, 2010.

F. Misagh, G. Yari: Interval entropy and informative distance. Entropy (electronic only) 14 (2012), 480–490.

S. Park: On Kullback-Leibler information of order statistics in terms of the relative risk. Metrika 77 (2014), 609–616.

S. Park, M. Shin: Kullback-Leibler information of a censored variable and its applications. Statistics 48 (2014), 756–765.

A. Rényi: On measures of entropy and information. Proc. 4th Berkeley Symp. Math. Stat. Probab., Vol. I. Univ. California Press, Berkeley, Calif., 1961, pp. 547–561.

J. M. Ruiz, J. Navarro: Characterizations based on conditional expectations of the doubled truncated distribution. Ann. Inst. Stat. Math. 48 (1996), 563–572.

P. G. Sankaran, S. M. Sunoj: Identification of models using failure rate and mean residual life of doubly truncated random variables. Stat. Pap. 45 (2004), 97–109.

M. Shaked, J. G. Shanthikumar: Stochastic Orders. Springer Series in Statistics, Springer, New York, 2007.

S. M. Sunoj, M. N. Linu: On bounds of some dynamic information divergence measures. Statistica 72 (2012), 23–36.

S. M. Sunoj, P. G. Sankaran, S. S. Maya: Characterizations of life distributions using conditional expectations of doubly (interval) truncated random variables. Commun. Stat., Theory Methods 38 (2009), 1441–1452.

R. S. Varma: Generalizations of Renyi’s entropy of order α. J. Math. Sci. 1 (1966), 34–48.

C. Wang, H.-H. Chang, K. A. Boughton: Kullback-Leibler information and its applications in multi-dimensional adaptive testing. Psychometrika 76 (2011), 13–39.