Some results concerning n-σ-centralizing mappings in semiprime rings

Vincenzo De Filippis1, Basudeb Dhara2
1Department of Mathematics and Computer Science, University of Messina, Messina, Italy
2Department of Mathematics, Belda College, Belda, Paschim Medinipur, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ali, F.; Chaudhry, M.A.: On generalized (α, β)-derivations of semiprime rings. Turk. J. Math. 34, 1–6 (2010)

Beidar, K.I.; Fong, Y.; Lee, P.H.; Wong, T.L.: On additive maps in prime rings satisfying the Engel condition. Commun. Algebra 25(12), 3889–3902 (1997)

Bell, H.E.; Martindale, W.S.: Centralizing mappins of semiprime rings. Can. Math. Bull. 30(1), 92–101 (1987)

Brešar, M.; Hvala, B.: On additive maps of prime rings. Bull. Austral. Math. Soc. 51, 377–381 (1995)

Brešar, M.: On certain pairs of functions of semiprime rings. Proc. Am. Math. Soc. 120(3), 709–713 (1994)

Brešar, M.: Centralizing mappings and derivations in prime rings. J. Algebra 156, 385–394 (1993)

Deng, Q.; Bell, H.E.: On derivations and commutativity in semiprime rings. Commun. Algebra 23(10), 3705–3713 (1995)

Deng, Q.: On N-centralizing mappings of prime rings. Proc. R. Irish Acad. 93A(2), 171–176 (1993)

Dhara, B.; Ali, S.: On n-centralizing generalized derivations in semiprime rings with applications to C*-algebras. J. Algebra Appl. 11(6), Paper No. 1250111 (2012)

Fošner, A.; Vukman, J.: Some results concerning additive mappings and derivations on semiprime rings. Publ. Math. Debrecen 78(3–4) 575–581 (2011)

Lanski, C.: An Engel condition with derivation for left ideals. Proc. Am. Math. Soc. 125(2): 339–345 (1997)

Lee, P.H.; Lee, T.K.: Lie ideals of prime rings with derivations. Bull. Inst. Math. Acad. Sinica 11, 75–80 (1983)

Lee, T.K.: σ-commuting mappings in semiprime rings. Commun. Algebra 29(7), 2945–2951 (2001)

Lee, T.K.; Lee, T.C.: Commuting mappings in semiprime rings. Bull. Inst. Math. Acad. Sinica 24, 259–268 (1996)

Mayne, J.: Centralizing automorphisms of prime rings. Can. Math. Bull. 19, 113–115 (1976)

Posner, E.C.: Derivation in prime rings. Proc. Am. Math. Soc. 8, 1093–1100 (1957)

Rehman, N.; De Filippis, V.: On n-commuting and n-skew commuting maps with generalized derivations in prime and semiprime rings. Siberian Math. J. 52(3), 516–523 (2011)

Sharma, R.K.; Dhara, B.: Skew-commuting and commuting mappings in rings with left identity. Result. Math. 46, 123–129 (2004)

Vukman, J.: Derivations on semiprime rings. Bull. Austral. Math. Soc. 53, 353–359 (1995)