Some remarks on the study of good contractions

manuscripta mathematica - Tập 87 Số 1 - Trang 359-367 - 1995
Andreatta, M.1
1Dipartimento di Matematica, Universitá di Trento, Povo (TN), Italia

Tóm tắt

LetX be a complex projective variety with log terminal singularities admitting an extremal contraction in terms of Minimal Model Theory, i.e. a projective morphism φ:X→Z onto a normal varietyZ with connected fibers which is given by a (high multiple of a) divisor of the typeK x+rL, wherer is a positive rational number andL is an ample Cartier divisor. We first prove that the dimension of anu fiberF of φ is bigger or equal to (r-1) and, if φ is birational, thatdimF≥r, with the equalities if and only ifF is the projective space andL the hyperplane bundle (this is a sort of “relative” version of a theorem of Kobayashi-Ochiai). Then we describe the structure of the morphism φ itself in the case in which all fibers have minimal dimension with the respect tor. If φ is a birational divisorial contraction andX has terminal singularities we prove that φ is actually a “blow-up”.

Tài liệu tham khảo

citation_journal_title=Math. Ann.; citation_title=Contraction of Gorenstein polarized varieties with high nef value; citation_author=M. Andreatta; citation_volume=300; citation_publication_date=1994; citation_pages=669-679; citation_doi=10.1007/BF01450508; citation_id=CR1 citation_journal_title=Contemporary Math.; citation_title=Generically ample divisors on normal Gorenstein surfaces, in Singularities; citation_author=M. Andreatta, A.J. Sommese; citation_volume=90; citation_publication_date=1989; citation_pages=1-20; citation_id=CR2 [A-W1] Andreatta, M.—Wiśniewski, J.: A note on non vanishing and its applications, Duke Math. J.72 (1993). [A-W2] Andreatta, M.—Wiśniewski, On good contractions of smooth of smooth 4-folds, in preparation. citation_journal_title=J. reine und angew. Math.; citation_title=On the adjunction theoretic classification of polarized varieties; citation_author=M. Beltrametti, A.J. Sommese; citation_volume=427; citation_publication_date=1992; citation_pages=157-192; citation_id=CR5 [E-W] Esnault, H., Vieheweg E.Lectures on Vanishing Theorems, DMV Seminar Band 20, Birkhäuser Verlag (1992) [Fu1] Fujita, T., On polarized Manifolds whose adjoint bundles are not semipositive, Advanced Studies in Pure Mathematics10 (1987), Algebraic Geometry Sendai 1985, 167–178. [Fu2] Fujita, T., Classification theories of polarized varieties, London Lect. Notes115, Cambridge Press 1990. citation_journal_title=Nagoya Math. J.; citation_title=Remarks on quasi-polarized varieties; citation_author=T. Fujita; citation_volume=115; citation_publication_date=1989; citation_pages=105-123; citation_id=CR9 [Ha] Harshorne, R.,Algebraic Geometry, Springer-Verlag, 1977. citation_journal_title=Math. Ann.; citation_title=Ramification divisors for branched coverings ofP n ; citation_author=H. Maeda; citation_volume=288; citation_publication_date=1990; citation_pages=195-198; citation_doi=10.1007/BF01444529; citation_id=CR11 citation_journal_title=J. reine und angew. Math.; citation_title=On blowing down projective spaces in singular varieties; citation_author=J. Lipman, A.J. Sommese; citation_volume=362; citation_publication_date=1985; citation_pages=51-62; citation_id=CR12 [K-M-M] Kawamata, Y., Matsuda, K., Matsuki, K.: Introduction to the Minimal Model Program inAlgebraic Geometry, Sendai, Adv. Studies in Pure Math.10, Kinokuniya-North-Holland 1987, 283–360. citation_journal_title=J. Math. Soc. Japan; citation_title=On complex manifolds with positive tangent bundles; citation_author=S. Kobayashi, T. Ochiai; citation_volume=22; citation_publication_date=1970; citation_pages=499-525; citation_doi=10.2969/jmsj/02240499; citation_id=CR14 citation_journal_title=Journal of the A.M.S.; citation_title=Classification of three-dimensional flips; citation_author=J. Kollár, S. Mori; citation_volume=5; citation_publication_date=1992; citation_pages=533-703; citation_doi=10.2307/2152704; citation_id=CR15 citation_journal_title=J. reine und angew. Math.; citation_title=Ample Cartier divisors on normal surfaces; citation_author=F. Sakai; citation_volume=366; citation_publication_date=1986; citation_pages=121-128; citation_id=CR16 citation_journal_title=Duke Math. Journal; citation_title=On ample vector bundle whose adjunction bundles are not numerically effective; citation_author=Y.G. Ye, Q. Zhang; citation_volume=60; citation_issue=n. 3; citation_publication_date=1990; citation_pages=671-687; citation_doi=10.1215/S0012-7094-90-06027-2; citation_id=CR17