Some remarks on the characterization of the space of tangential traces ofH(rot;Ω) and the construction of an extension operator

manuscripta mathematica - Tập 89 Số 1 - Trang 159-178 - 1996
Ana Alonso1, Alberto Valli2
1Departmento de Matemática aplicada, Universidad Complutense de Madrid, Madrid, SPAIN
2Dipartimento di Matematica, Università di Trento, Povo (Trento), Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

A. Alonso and A. Valli, A domain decomposition approach for heterogeneous time-harmonic Maxwell equations, Comput. Meth. Appl. Mech. Engrg., submitted

C. Bègue, C. Conca, F. Murat and O. Pironneau, Les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression, inNonlinear Partial Differetial Equation and Their Applications. Collège de France Seminar Volume IX, H. Brezis and J.-L. Lions eds., Longman, Harlow, pp. 179–264 (1988)

A. Bendali, J.M. Dominguez and S. Gallic, A variational approach for the vector potential formulation of the Stokes and Navier-Stokes problems in three dimensional domains. J. Math. Anal. Appl.107, 537–560 (1985)

G.F.D. Duff, Differential forms in manifold with boundary, Ann. Math.56, 115–127 (1952)

G.F.D. Duff and D.C. Spencer, Harmonic tensors on Riemannian manifolds with boundary, Ann. Math.56, 128–156 (1952)

J. Eells and Ch.B. Morrey, A variational method in the theory of harmonic integrals, Ann. Math.63, 91–128 (1956)

C. Foias and R. Temam, Remarques sur les équations de Navier-Stokes station-naires et les phénomènes successifs de bifurcations, Ann. Scuola Norm. Sup. Pisa5 (IV), 29–63 (1978)

K.O. Freidrichs, On differential forms on Riemannian manifolds, Comm. Pure Appl. Math.8, 551–590 (1955)

M.P. Gaffney, Hilbert space methods in the theory of harmonic integrals, Trans. Amer. Math. Soc.78, 420–444 (1955)

V. Georgescu, Some boundary value problems for differential forms on compact Riemannian manifolds, Ann. Mat. Pura Appl.122, 159–198 (1979)

V. Girault and P.-A. Raviart,Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer-Verlag, Berlin 1986

R. Kress, Grundzüge einer Theorie verallgemeinerter harmonischer Vektorfelder, Meth. Verf. Math. Phys.2, 49–83 (1969)

R. Kress, Ein kombiniertes Dirichlet-Neumannsches Randwertproblem bei harmonischen Vektorfeldern. Arch. Rational Mech. Anal.42, 40–49 (1971)

R. Kress, Potentialteoretische Randwertprobleme bei Tensorfeldern beliebiger Dimensionen und beliebigen Ranges, Arch. Rational Mech. Anal.47, 59–80 (1972)

R. Leis,Initial Boundary Value Problems in Mathematical Physics, Teubner, Stuttgart & Wiley, Chichester, 1986

Ch.B. Morrey, A variational method in the theory of harmonic integrals II, Amer. J. Math.78, 137–170 (1956)

L. Paquet, Problèmes mixtes pour le système de Maxwell, C.R. Acad. Sci. Paris289 A, 191–194 (1979)

L. Paquet, Problèmes mixtes pour le système de Maxwell, Ann. Fac. Sci. Touluse Math.4, 103–141 (1982)

R. Picard, Zur Theorie der harmonischen Differentialformen, Manuscr. Math.27, 31–45 (1979)

R. Picard, Randwertaufgaben der verallgemeinerten Potentialtheorie, Math. Meth. Appl. Sci.3, 218–228 (1981)

R. Picard, On the boundary value problems of electro- and magnetostatics, Proc. Royal Soc. Edinburgh92 A, 165–174 (1982)

R. Picard, An elementary proof for a compact imbedding result in generalized electromagnetic theory, Math. Z.187, 151–164 (1984)

J. Saranen, On generalized harmonic fields in domains with anisotropic nonhomogeneous media, J. Math. Anal. Appl.88, 104–115 (1982); Erratum: J. Math. Anal. Appl.91, 300 (1983)

J. Saranen, On electric and magnetic problems for vector fields in anisotropic nonhomogeneous media, J. Math. Anal. Appl.91, 254–275 (1983)

K.J. Witsch, A remark on a compactness result in electromagnetic theory, Math. Meth. Appl. Sci.16, 123–129 (1993)