Some properties of pseudo-fractional operators
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agahi, H., Babakhani, A., Mesiar, R.: Pseudo-fractional integral inequality of Chebyshev type. Inf. Sci. 301, 161–168 (2015)
Agahi, H., Alipour, M.: On pseudo-Mittag-Leffler functions and applications. Fuzzy Sets Syst. (2017). doi: 10.1016/j.fss.2016.11.011
Agahi, H., Mesiar, R., Ouyang, Y.: Chebyshev type inequalities for pseudo-integrals. Nonlinear Anal. 72, 2737–2743 (2010)
Chen, Y., Gao, H., Sun, C.: The stochastic fractional power dissipative equations in any dimension and applications. J. Math. Anal. Appl. 425, 1240–1256 (2015)
Gaul, L., Klein, P., Kempfle, S.: Damping description involving fractional operators. Mech. Syst. Signal Process. 5, 81–88 (1991)
Hosseini, M., Babakhani, A., Agahi, H., Rasouli, S.H.: On pseudo-fractional integrals inequalities related to Hermite–Hadamard type. Soft Comput. 20(7), 2521–2529 (2017)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, Netherlands (2006)
Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984)
Mesiar, R., Pap, E.: Idempotent integral as limit of $$g$$ g -integrals. Fuzzy Sets Syst. 102, 385–392 (1999)
Mesiar, R., Rybárik, J.: Pseudo-arithmetical operations. Tatra Mt. Math. Publ. 2, 185–192 (1993)
Metzler, F., Schick, W., Kilian, H.G., Nonnenmacher, T.F.: Relaxation in filled polymers: a fractional calculus approach. J. Chem. Phys. 103, 7180–7186 (1995)
Pap, E.: An integral generated by decomposable measure. Univ. Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 20(1), 135–144 (1990)
Pap, E.: $$g$$ g -calculus. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 23(1), 145–156 (1993)
Pap, E., Ralević, N.: Pseudo-Laplace transform. Nonlinear Anal. 33, 553–560 (1998)
Pap, E.: Applications of the generated pseudo-analysis on nonlinear partial differential equations. In: Litvinov, G.L., Maslov, V.P. (eds.) Proceedings of the conference on idempotent mathematics and mathematical physics, contemporary mathematics 377, American Mathematical Society, 239–259 (2005)
Pap, E., Štrboja, M.: Generalization of the Jensen inequality for pseudo-integral. Inf. Sci. 180, 543–548 (2010)
Pap, E., Štrboja, M., Rudas, I.: Pseudo-L $$^{p}$$ p space and convergence. Fuzzy Sets Syst. 238, 113–128 (2014)
Pap, E.: Pseudo-additive measures and their applications. In: Pap, E. (ed.) Handbook of Measure Theory, pp. 1403–1468. Elsevier, Amsterdam (2002)
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integral and Derivatives (Theory and Application). Gordon and Breach, Switzerland (1993)