Some properties of pseudo-fractional operators

Abolfazl Babakhani1, Milad Yadollahzadeh2, A. Neamaty2
1Department of Mathematics, Babol Noshirvani University of Technology, Babol, Iran
2Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agahi, H., Babakhani, A., Mesiar, R.: Pseudo-fractional integral inequality of Chebyshev type. Inf. Sci. 301, 161–168 (2015)

Agahi, H., Alipour, M.: On pseudo-Mittag-Leffler functions and applications. Fuzzy Sets Syst. (2017). doi: 10.1016/j.fss.2016.11.011

Agahi, H., Mesiar, R., Ouyang, Y.: Chebyshev type inequalities for pseudo-integrals. Nonlinear Anal. 72, 2737–2743 (2010)

Chen, Y., Gao, H., Sun, C.: The stochastic fractional power dissipative equations in any dimension and applications. J. Math. Anal. Appl. 425, 1240–1256 (2015)

Gaul, L., Klein, P., Kempfle, S.: Damping description involving fractional operators. Mech. Syst. Signal Process. 5, 81–88 (1991)

Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

Hosseini, M., Babakhani, A., Agahi, H., Rasouli, S.H.: On pseudo-fractional integrals inequalities related to Hermite–Hadamard type. Soft Comput. 20(7), 2521–2529 (2017)

Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, Netherlands (2006)

Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984)

Kuich, W.: Semirings, Automata, Languages. Springer, Berlin (1986)

Mesiar, R., Pap, E.: Idempotent integral as limit of $$g$$ g -integrals. Fuzzy Sets Syst. 102, 385–392 (1999)

Mesiar, R., Rybárik, J.: Pseudo-arithmetical operations. Tatra Mt. Math. Publ. 2, 185–192 (1993)

Metzler, F., Schick, W., Kilian, H.G., Nonnenmacher, T.F.: Relaxation in filled polymers: a fractional calculus approach. J. Chem. Phys. 103, 7180–7186 (1995)

Pap, E.: An integral generated by decomposable measure. Univ. Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 20(1), 135–144 (1990)

Pap, E.: $$g$$ g -calculus. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 23(1), 145–156 (1993)

Pap, E., Ralević, N.: Pseudo-Laplace transform. Nonlinear Anal. 33, 553–560 (1998)

Pap, E.: Applications of the generated pseudo-analysis on nonlinear partial differential equations. In: Litvinov, G.L., Maslov, V.P. (eds.) Proceedings of the conference on idempotent mathematics and mathematical physics, contemporary mathematics 377, American Mathematical Society, 239–259 (2005)

Pap, E., Štrboja, M.: Generalization of the Jensen inequality for pseudo-integral. Inf. Sci. 180, 543–548 (2010)

Pap, E., Štrboja, M., Rudas, I.: Pseudo-L $$^{p}$$ p space and convergence. Fuzzy Sets Syst. 238, 113–128 (2014)

Pap, E.: Pseudo-additive measures and their applications. In: Pap, E. (ed.) Handbook of Measure Theory, pp. 1403–1468. Elsevier, Amsterdam (2002)

Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integral and Derivatives (Theory and Application). Gordon and Breach, Switzerland (1993)

Sugeno, M., Murofushi, T.: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122, 197–222 (1987)