Some perturbation results through localized SVEP

Pietro Aiena, Salvatore Triolo

Tóm tắt

Từ khóa


Tài liệu tham khảo

P. Aiena, Fredholm and local spectral theory, with application to multipliers, Kluwer Academic Publishers, Dordrecht, 2004.

P. Aiena, M. T. Biondi and C. Carpintero, On Drazin invertibility, Proc. Amer. Math. Soc., 136 (2008), 2839–2848.

P. Aiena, J. R. Guilln and P. Peña, Property (gR) and perturbations, Acta Sci. Math. (Szeged), 78 (2012), 569–588.

P. Aiena, J. R. Guilln and P. Peña, Property (gb) through local spectral theory, Math. Proc. Royal Irish Ac. (2014), to appear.

P. Aiena and M. M. Neumann, On the stability of the localized single-valued extension property under commuting perturbations, Proc. Amer. Math. Soc., 141 (2013), 2039–2050.

P. Aiena and T. L. Miller, On generalized a-Browder’s theorem, Studia Mathematica, 180 (2007), 285–300.

P. Aiena, T. L. Miller and M. M. Neumann, On a localized single-valued extension property, Math. Proc. Royal Irish Ac., 104A (2004), 17–34.

P. Aiena and V. Müller, The localized single-valued extension property and Riesz operators, Proc. Amer. Math. Soc. (2014), to appear; doi: 10.1090/S0002-9939-2014-12404-X.

M. Berkani, On a class of quasi-Fredholm operators, Int. Equa. Oper. Theory, 34 (1999), 244–249.

M. Berkani, Restriction of an operator to the range of its powers, Studia Math., 140 (2000), 163–75.

M. Berkani, Index of B-Fredholm operators and generalization of aWeyl’s theorem, Proc. Amer. Math. Soc., 130 (2001), 1717–1723.

M. Berkani, On a class of quasi-Fredholm operators, Int. Equa. Oper. Theory, 34 (1999), 244–249.

M. Berkani and M. Sarih, On semi B-Fredholm operators, Glasgow Math. J., 43 (2001), 457–465.

M. Berkani and H. Zariuoh, Extended Weyl type theorems, Mathematica Bohemica, 134 (2009), 369–378.

M. Berkani and H. Zariuoh, B-Fredholm spectra and Riesz perturbations, preprint (2014).

A. Bourhim and V. G. Miller, The single-valued extension property is not preserved under sums and products of commuting operators, Glasgow Math. J., 49 (2007), 99–104.

D. S. Djordjević, Operators obeying a-Weyl’s theorem, Publ. Math. Debrecen, 55 (1999), 283–298.

N. Dunford, Spectral theory II. Resolutions of the identity, Pacific J. Math., 2 (1952), 559–614.

N. Dunford, Spectral operators, Pacific J. Math., 4 (1954), 321–354.

J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math., 58 (1975), 61–69.

S. Grabiner, Ascent, descent and compact perturbations, Proc. Amer. Math. Soc., 71 (1978), 79–80.

S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan, 34 (1982), 317–337.

Q. Jiang, H. Zhong and Q. Zeng, Topological uniform descent and localized SVEP, J. Math. Anal. Appl., 390 (2012), 355–361.

V. Kordula, V. Müller and V. Rakočević, On the semi-Browder spectrum, Studia Math., 123 (1997), 1–13.

J. P. Labrousse, Les opérateurs quasi-Fredholm, Rend. Circ. Mat. Palermo, XXIX (1980), 161–258.

K. B. Laursen and M. M. Neumann, Introduction to local spectral theory, Clarendon Press, Oxford, 2000.

M. Mbekhta, Résolvant généralisé et théorie spectrale, J. Operator Theory, 21 (1989), 69–105.

M. Mbekhta and V. Müller, On the axiomatic theory of spectrum II, Studia Math., 119 (1996), 129–47.

V. Rakočević, Semi-Browder’s operators and perturbations, Studia Math., 122 (1997), 131–137.

Q. P. Zeng, Q. Jianf and H. Zhong, Spectra originating from semi B-Fredholm theory and commuting perturbations, Studia Math., 219 (2013), 1–18.