Some normed binomial difference sequence spaces related to the $\ell_{p}$ spaces
Tóm tắt
The aim of this paper is to introduce the normed binomial sequence spaces
$b^{r,s}_{p}(\nabla)$
by combining the binomial transformation and difference operator, where
$1\leq p\leq\infty$
. We prove that these spaces are linearly isomorphic to the spaces
$\ell_{p}$
and
$\ell _{\infty}$
, respectively. Furthermore, we compute Schauder bases and the α-, β- and γ-duals of these sequence spaces.
Tài liệu tham khảo
Kizmaz, H: On certain sequence spaces. Can. Math. Bull. 24, 169-176 (1981)
Bektaş, C, Et, M, Çolak, R: Generalized difference sequence spaces and their dual spaces. J. Math. Anal. Appl. 292, 423-432 (2004)
Dutta, H: Characterization of certain matrix classes involving generalized difference summability spaces. Appl. Sci. 11, 60-67 (2009)
Reddy, BS: On some generalized difference sequence spaces. Soochow J. Math. 26, 377-386 (2010)
Tripathy, BC, Esi, A: On a new type of generalized difference Cesàro sequence spaces. Soochow J. Math. 31, 333-340 (2005)
Tripathy, BC, Esi, A: A new type of difference sequence spaces. Int. J. Sci. Technol. 1, 147-155 (2006)
Altay, B, Polat, H: On some new Euler difference sequence spaces. Southeast Asian Bull. Math. 30, 209-220 (2006)
Başarir, M, Kara, EE: On compact operators on the Riesz \({B}^{m}\)-difference sequence spaces. Iran. J. Sci. Technol. 35, 279-285 (2011)
Başarir, M, Kara, EE: On some difference sequence spaces of weighted means and compact operators. Ann. Funct. Anal. 2, 114-129 (2011)
Başarir, M, Kara, EE: On compact operators on the Riesz \({B}^{m}\)-difference sequence spaces II. Iran. J. Sci. Technol. 33, 371-376 (2012)
Başarir, M, Kara, EE: On the B-difference sequence space derived by generalized weighted mean and compact operators. J. Math. Anal. Appl. 391, 67-81 (2012)
Başarir, M, Kara, EE: On the mth order difference sequence space of generalized weighted mean and compact operators. Acta Math. Sci. 33, 797-813 (2013)
Kara, EE: Some topological and geometrical properties of new Banach sequence spaces. J. Inequal. Appl. 2013, 38 (2013)
Kara, EE, İlkhan, M: On some Banach sequence spaces derived by a new band matrix. Br. J. Math. Comput. Sci. 9, 141-159 (2015)
Polat, H, Başar, F: Some Euler spaces of difference sequences of order m. Acta Math. Sci. 27, 254-266 (2007)
Altay, B, Başar, F, Mursaleen, M: On the Euler sequence spaces which include the spaces \(\ell_{p}\) and \(\ell_{\infty}\) I. Inf. Sci. 176, 1450-1462 (2006)
Kara, EE, Başarir, M: On compact operators and some Euler \({B}^{(m)}\)-difference sequence spaces. J. Math. Anal. Appl. 379, 499-511 (2011)
Karakaya, V, Polat, H: Some new paranormed sequence spaces defined by Euler and difference operators. Acta Sci. Math. 76, 87-100 (2010)
Bişgin, MC: The binomial sequence spaces of nonabsolute type. J. Inequal. Appl. 2016, 309 (2016)
Bişgin, MC: The binomial sequence spaces which include the spaces \(\ell_{p}\) and \(\ell_{\infty}\) and geometric properties. J. Inequal. Appl. 2016, 304 (2016)
Choudhary, B, Nanda, S: Functional Analysis with Application. Wiley, New Delhi (1989)
Köthe, G, Toeplitz, O: Linear Raume mit unendlichvielen koordinaten and Ringe unenlicher Matrizen. J. Reine Angew. Math. 171, 193-226 (1934)
Stieglitz, M, Tietz, H: Matrixtransformationen von folgenräumen eine ergebnisubersict. Math. Z. 154, 1-16 (1977)
Başar, F: Summability Theory and its Applications. Bentham Science, Istanbul (2012). ISBN:978-1-60805-420-6