Some new transformations for Bailey pairs and WP-Bailey pairs
Tóm tắt
Từ khóa
Tài liệu tham khảo
Andrews G.E., Bailey’s transform, lemma, chains and tree, Special functions 2000: current perspective and future directions (Tempe, AZ), 1–22, NATO Sci. Ser. II Math. Phys. Chem., 30, Kluwer Acad. Publ., Dordrecht, 2001
Andrews G.E., Berkovich A, The WP-Bailey tree and its implications, J. London Math. Soc.(2), 2002, 66(3), 529–549
Andrews G.E., Lewis R., Liu Z.G., An identity relating a theta function to a sum of Lambert series, Bull. London Math. Soc., 2001, 33(1), 25–31
Borwein J.M., Borwein P.B., A cubic counterpart of Jacobi’s identity and the AGM, Trans. Amer. Math. Soc, 1991, 323(2), 691–701
Bressoud D., Some identities for terminating q-series, Math. Proc. Cambridge Philos. Soc, 1981, 89(2), 211–223
Gasper G., Rahman M., Basic hypergeometric series, With a foreword by Richard Askey, Encyclopedia of Mathematics and its Applications, 96, Cambridge University Press, Cambridge, 2004
Liu Q., Ma X., On the Characteristic Equation of Well-Poised Baily Chains, Ramanujan J., 2009, 18(3), 351–370
Mc Laughlin J., Sills A.V., Zimmer P., Some implications of Chu’s 10Ψ10 extension of Bailey’s 6Ψ6 summation formula, preprint
Mc Laughlin J., Zimmer P., Some Implications of the WP-Bailey Tree, Adv. in Appl. Math., 2009, 43(2), 162–175
Singh U.B., A note on a transformation of Bailey, Quart. J. Math. Oxford Ser. (2), 1994, 45(177), 111–116
Slater L.J., A new proof of Rogers’s transformations of infinite series, Proc. London Math. Soc. (2), 1951, 53, 460–475
Spiridonov V.P., An elliptic incarnation of the Bailey chain, Int. Math. Res. Not., 2002, 37, 1945–1977
Watson G.N., The Final Problem: An Account of the Mock Theta Functions, J. London Math. Soc., 1936, 11, 55–80