Some new transformations for Bailey pairs and WP-Bailey pairs

James Mc Laughlin1
1Mathematics Department, West Chester University, West Chester, PA, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Andrews G.E., Bailey’s transform, lemma, chains and tree, Special functions 2000: current perspective and future directions (Tempe, AZ), 1–22, NATO Sci. Ser. II Math. Phys. Chem., 30, Kluwer Acad. Publ., Dordrecht, 2001

Andrews G.E., Berkovich A, The WP-Bailey tree and its implications, J. London Math. Soc.(2), 2002, 66(3), 529–549

Andrews G.E., Berndt B.C., Ramanujans Lost Notebook, Part I, Springer, 2005

Andrews G.E., Lewis R., Liu Z.G., An identity relating a theta function to a sum of Lambert series, Bull. London Math. Soc., 2001, 33(1), 25–31

Berndt B.C., Ramanujans Notebooks, Part III, Springer-Verlag, New York, 1991

Berndt B.C., Ramanujans Notebooks, Part V, Springer-Verlag, New York, 1998

Borwein J.M., Borwein P.B., A cubic counterpart of Jacobi’s identity and the AGM, Trans. Amer. Math. Soc, 1991, 323(2), 691–701

Bressoud D., Some identities for terminating q-series, Math. Proc. Cambridge Philos. Soc, 1981, 89(2), 211–223

Gasper G., Rahman M., Basic hypergeometric series, With a foreword by Richard Askey, Encyclopedia of Mathematics and its Applications, 96, Cambridge University Press, Cambridge, 2004

Liu Q., Ma X., On the Characteristic Equation of Well-Poised Baily Chains, Ramanujan J., 2009, 18(3), 351–370

Mc Laughlin J., Sills A.V., Zimmer P., Some implications of Chu’s 10Ψ10 extension of Bailey’s 6Ψ6 summation formula, preprint

Mc Laughlin J., Zimmer P., General WP-Bailey Chains, Ramanujan J., 2010, 22(1), 11–31

Mc Laughlin J., Zimmer P., Some Implications of the WP-Bailey Tree, Adv. in Appl. Math., 2009, 43(2), 162–175

Singh U.B., A note on a transformation of Bailey, Quart. J. Math. Oxford Ser. (2), 1994, 45(177), 111–116

Slater L.J., A new proof of Rogers’s transformations of infinite series, Proc. London Math. Soc. (2), 1951, 53, 460–475

Spiridonov V.P., An elliptic incarnation of the Bailey chain, Int. Math. Res. Not., 2002, 37, 1945–1977

Watson G.N., The Final Problem: An Account of the Mock Theta Functions, J. London Math. Soc., 1936, 11, 55–80

Warnaar S.O, Extensions of the well-poised and elliptic well-poised Bailey lemma, Indag. Math. (N.S.), 2003, 14, 571–588