Some new paranormed sequence spaces defined by Euler and difference operators

Springer Science and Business Media LLC - Tập 76 Số 1-2 - Trang 87-100 - 2010
Vatan Karakaya1, Harun Polat2
1Yıldız Technical University
2University of Muş Alparslan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Z. U. Ahmad and Mursaleen, Köthe-Toeplitz duals of some new sequence spaces and their matrix maps, Publ. Inst. Math. (Beograd), 42(56) (1987), 57–61.

B. Altay and H. Polat, On some new Euler difference sequence spaces, Southeast Asian Bull. Math., 30 (2006), 209–220.

B. Altay and F. Başcar, The fine spectrum and the matrix domain of the difference operator Δ on the sequence space ℓp, (0 < p < 1), Commun. Math. Anal., 2(2) (2007), 1–11.

B. Altay, F. Başcar and M. Mursaleen, On the Euler sequence space which include the spaces ℓp and ℓ∞ I, Inform. Sci., 176 (2006), 1450–1462.

B. Altay and F. Başar, Some Euler sequence spaces of non-absolute type, Ukrainian Math. J., 57(1) (2005), 1.17.

F. Başcar and B. Altay, On the space of sequences of p-bounded variation and related matrix mapping, Ukrainian Math. J., 55(1) (2003), 136–147.

K. G. Gross-Erdman, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl., 180 (1993), 223–238.

H. Kızmaz, On certain sequence space, Canad. Math. Bull., 24(2) (1981), 169–176.

I. J. Maddox, Space of strongly summable sequences, Quart. J. Math. Oxford, 18(2) (1967), 345–355.

I. J. Maddox, Elements of Functional Analysis, 2nd ed., The University Press, Cambridge, 1988.

E. Malkowsky, Recent results in the theory of matrix transformations in sequence spaces, Mat. Vesnik, 49 (1997), 187–196.

M. Mursaleen, F. Başcar and B. Altay, On the Euler sequence spaces which include the spaces ℓp and ℓ∞, Nonlinear Anal. TMA, 65(3) (2006), 707–717.

H. Nakano, Modulared sequence spaces, Proc. Japan Acad., 27 (1951), 508–512.

P.-N. Ng and P.-Y. Lee, Cesaro sequence spaces of non-absolute type, Comment. Math. Prace. Math., 20 (1978), 429–436.

H. Polat and F. Başcar, Some Euler spaces of difference sequences of order m, Acta Math. Sci. Ser. B Englad Ed., 27B(2) (2007), 254.266.

R. E. Powell and S. M. Shah, Summability Theory and Its Applications, Van Nostrand Reinhold Company, London, 1972.

S. Simons, The sequence spaces ℓ(pv) and m(pv), Proc. London Math. Soc. (3), 15 (1965), 422–436.

C. S. Wang, On Nörlund sequence spaces, Tamkang J. Math., 9 (1978), 269–274.