Some new contractive mappings on S-metric spaces and their relationships with the mapping (S25)

Ni̇hal Yilmaz Özgür1, Ni̇hal Taş1
1Department of Mathematics, Balıkesir University, 10145, Balıkesir, Turkey

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aghajani, A., Abbas, M., Roshan, J.R.: Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces. Math. Slovaca 64(4), 941–960 (2014)

An, T.V., Dung, N.V., Hang, V.T.L.: A new approach to fixed point theorems on G-metric spaces. Topol. Appl. 160(12), 1486–1493 (2013)

Bailey, D.F.: Some Theorems on contractive mappings. J. London Math. Soc. 41, 101–106 (1996)

Chang, S.S., Zhong, Q.C.: On Rhoades’ open questions. Proc. Am. Math. Soc. 109(1), 269–274 (1990)

Lj. Ciric B.: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45(2), 267–273 (1974)

Dung, N.V., Hieu, N.T., Radojevic, S.: Fixed point theorems for $$g$$ g -monotone maps on partially ordered $$S$$ S -metric spaces. Filomat 28(9), 1885–1898 (2014)

Fisher, B.: Quasi-contractions on metric spaces. Proc. Am. Math. Soc. 75(2), 321–325 (1979)

Gupta, A.: Cyclic contraction on $$S$$ S -metric space. Int. J. Anal. Appl. 3(2), 119–130 (2013)

Gupta, V., Deep, R.: Some coupled fixed point theorems in partially ordered $$S$$ S -metric spaces. Miskolc Math. Notes 16(1), 181–194 (2015)

Hieu, N.T., Ly, N.T., Dung, N.V.: A Generalization of Ciric Quasi-Contractions for Maps on $$S$$ S -Metric Spaces. Thai J. Math. 13(2), 369–380 (2015)

Özgür, N.Y., Taş, N.: Some generalizations of fixed point theorems on $$S$$ S -metric spaces. Essays in Mathematics and Its Applications in Honor of Vladimir Arnold, New York, Springer (2016)

Özgür, N.Y., Taş, N.A.: Some Fixed point theorems on $$S$$ S -Metric Spaces, accepted for publication in Mat. Vesnik

Rhoades, B.E.: A Comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 226, 257–290 (1977)

Sedghi, S., Shobe, N., Aliouche, A.: A generalization of fixed point theorems in $$S$$ S -metric spaces. Mat. Vesnik 64(3), 258–266 (2012)

Sedghi, S., Dung, N.V.: Fixed point theorems on $$S$$ S -metric spaces. Mat. Vesnik 66(1), 113–124 (2014)