Some new constructions of bivariate Weibull models
Tóm tắt
Từ khóa
Tài liệu tham khảo
Basu, A. P. (1988). Multivariate exponential distribution and their applications in reliability, Handbook of Statistics, 7, Quality Control and Reliability, (eds. P. R.Krishnaiah and C. R.Rao), Elsevier, The Netherlands.
Block, H. W. and Basu, A. P. (1974) A continuous bivariate exponential extension, J. Amer. Statist. Assoc., 69, 1031?1037.
Cantor, A. B. and Knapp, R. G. (1985). A test of the equality of survival distributions based on palred observations from conditionally independent exponential distributions, IEEE Trans. Reliability, 34, 342?346.
Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence, Biometrika, 65, 141?151.
Downton, F. (1970). Bivariate exponential distributions in reliability theory, J. Roy. Statist. Soc. Ser. B, 32, 408?417.
Esary, J. D. and Proschan, F. (1970). A reliability bound for systems of maintained, interdependent components, J. Amer. Statist. Assoc., 65, 329?338.
Freund, J. E. (1961). A bivariate extension of exponential distribution, J. Amer. Statist. Assoc., 56, 971?977.
Hawkes, A. G. (1972). A bivariate exponential distribution with application to reliability, J. Roy. Statist. Soc. Ser. B, 34, 129?131.
Hougaard, P. (1984). Life table methods for heterogeneous populations: Distributions describing the heterogeneity, Biometrika, 71, 75?83.
Hougaard, P. (1986). A class of multivariate failure time distributions, Biometrika, 73, 671?678.
Johnson, N. L. and Kotz, S. (1972). Distributions in Statistics: Continuous Multivariate Distributions, Wiley, New York.
Kimeldorf, G. and Sampson, A. (1975). One-parameter families of bivariate distributions with fixed marginals, Comm. Statist. A?Theory Methods, 4, 293?301.
Lee, L. (1979). Multivariate distributions having Weibull properties, J. Multivariate Anal., 9, 267?277.
Lu, J. C. and Bhattacharyya, G. K. (1988a). Some bivariate extensions of the Weibull distribution. Tech. Report No. 821, Department of Statistics, University of Wisconsin, Madison.
Lu, J. C. and Bhattacharyya, G. K. (1988b). Inference procedures for a bivariate exponentia model of Gumbel, Tech. Report No. 838, Department of Statistics, University of Wisconsin, Madison.
Marshall, A. W. and Olkin, I. (1967). A multivariate exponential distribution, J. Amer. Statist. Assoc., 62, 30?44.
Marshall, A. W. and Olkin, I. (1988). Families of multivariate distributions, J. Amer. Statist. Assoc., 83, 834?841.
Oakes, D. (1982). A model for association in bivariate survival data, J. Roy. Statist. Soc. Ser. B, 44, 414?422.
Oakes, D. (1989). Bivariate survival models induced by frailties, J. Amer. Statist. Assoc., 84, 487?493.
Paulson, A. S. (1973). A characterization of the exponential distribution and a bivariate exponential distribution, Sankhy? Ser. A, 35, 69?78.
Raftery, A. E. (1984). A continuous multivariate exponential distribution, Comm. Statist. A?Theory Methods, 13, 374?377.
Salvia, A. A. and Bollinger, R. C. (1984). Testing equality of correlated exponential variables, IEEE Trans. Reliability, 33, 374?377.
Sarkar, S. K. (1987). A continuous bivariate exponential distribution, J. Amer. Statist. Assoc., 82, 667?675.