Some low order nonconforming mixed finite elements combined with Raviart–Thomas elements for a coupled Stokes–Darcy model

Springer Science and Business Media LLC - Tập 30 - Trang 565-584 - 2013
Peiqi Huang1,2,3, Jinru Chen3
1Department of Mathematics, Nanjing University, Nanjing, People’s Republic of China
2Department of Applied Mathematics, Nanjing Forestry University, Nanjing, People’s Republic of China
3Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, People’s Republic of China

Tóm tắt

In this paper, we discuss numerical methods to solve a coupled Stokes–Darcy system. The deformation tensor form of Stokes equations is used to describe the fluid flow motion. The mixed form of elliptic equation is applied to describe the porous media flow motion. We propose finite element methods for the coupled problem. For Stokes equations, one component of the velocity is approximated by Crouzeix–Raviart element or Rannacher–Turek element, and the other component is approximated by conforming P 1 or Q 1 element; pressure is approximated by piecewise constants. For the mixed form of elliptic equation, the lowest order triangular/quadrilateral Raviart-Thomas element is used. The discrete mesh is nonmatching on the interface. By Boland-Nicolaides trick, the inf-sup condition of the discrete problem is proved. Moreover, we construct a new interpolation operator to derive the a priori error estimate of the proposed finite element method. Numerical examples are also given to confirm the theoretical results.

Tài liệu tham khảo

Arbogast T., Gomez M.: A discretization and multigrid solver for a Darcy–Stokes system of three dimensional vuggy porous media. Comput. Geosci. 13, 331–348 (2009) Babuska I., Gatica G.N.: A residual-based a posteriori error estimator for the Stokes–Darcy coupled problem. SIAM J. Numer. Anal. 48, 498–523 (2010) Beavers G.S., Joseph D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967) Bernardi, C., Maday, Y., Patera, A.T.: A new nonconforming approach to domain decomposition: the mortar element method. In: Brezis, H., Lions, J.L. (eds.) College de France Seminar, vol. XI. Pitman, London, pp. 13–51 (1994) Bernardi C., Rebollo T.C., Hecht F., Mghazli Z.: Mortar finite element discretization of a model coupling Darcy and Stokes equations. Math. Model. Numer. Anal. 42, 375–410 (2008) Boland J.M., Nicolaides R.A.: Stability of finite elements under divergence constraints. SIAM J. Numer. Anal. 20, 722–731 (1983) Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991) Burman E., Hansbo P.: A unified stabilized method for Stokes’ and Darcy’s equations. J. Comput. Appl. Math. 198, 35–51 (2007) Cai M.C., Mu M., Xu J.C.: Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications. J. Comput. Appl. Math. 233, 346–355 (2009) Chen W.B., Gunzburger M., Hua F., Wang X.M.: A parallel Robin–Robin domain decomposition method for the Stokes–Darcy system. SIAM J. Numer. Anal. 49, 1064–1084 (2011) Crouzeix M., Raviart P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. RAIRO Anal. Numer. 7, 33–75 (1973) Discacciati M., Miglio E., Quarteroni A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43, 57–74 (2002) Feng M.F., Qi R.S., Zhu R., Ju B.T.: Stabilized Crouzeix–Raviart element for the coupled Stokes and Darcy problem. Appl. Math. Mech. Engl. Ed. 31, 393–404 (2010) Galvis J., Sarkis M.: Non-matching mortar discretization analysis for the coupling Stokes–Darcy equations. Electron. Trans. Numer. Anal. 26, 350–384 (2007) Gatica G.N., Meddahi S., Oyarzúa R.: A conforming mixed finite-element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal. 29, 86–108 (2009) Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms. Springer, Berlin (1986) Huang P.Q., Chen J.R.: Two-level and multilevel methods for Stokes–Darcy problem discretized by nonconforming elements on nonmatching meshes (in Chinese). Sci. Sin. Math. 42, 389–402 (2012) Huang P.Q., Chen J.R., Cai M.C.: A mixed and nonconforming FEM with nonmatching meshes for a coupled Stokes–Darcy model. J. Sci. Comput. 53, 377–394 (2012) Kouhia R., Stenberg R.: A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow. Comput. Methods Appl. Mech. Eng. 124, 195–212 (1995) Layton W.J., Schieweck F., Yotov I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195–2218 (2003) Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. 1. Springer, New York (1972) Mathew, T.P.: Domain Decomposition and Iterative Refinement Methods for Mixed Finite Element Discretizations of Elliptic Problems. Ph.D. thesis, Courant Institute of Mathematical Sciences, New York University (1989) Ming P.B., Shi Z.C.: Nonconforming rotated Q 1 element for Reissner–Mindlin plate. Math. Models Methods Appl. Sci. 8, 1311–1342 (2001) Mu M., Xu J.C.: A two-grid method of a mixed Stokes–Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45, 1801–1813 (2007) Rannacher R., Turek S.: Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Eq. 8, 97–111 (1992) Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics, vol. 606, pp. 292–315. Springer, Berlin (1977) Riviere B., Yotov I.: Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42, 1959–1977 (2005) Rui H., Zhang R.: A unified stabilized mixed finite element method for coupling Stokes and Darcy flows. Comput. Methods Appl. Mech. Eng. 198, 2692–2699 (2009) Saffman P.: On the boundary condition at the surface of a porous media. Stud. Appl. Math. 50, 93–101 (1971) Xie X.P., Xu J.C., Xue G.R.: Uniformly-stable finite element methods for Darcy–Stokes–Brinkman models. J. Comput. Math. 26, 437–455 (2008) Xu X.J., Zhang S.Y.: A new divergence-free interpolation operator with applications to the Darcy–Stokes–Brinkman equations. SIAM J. Sci. Comput. 32, 855–874 (2010)