Some like it hot: the structure and function of small heat-shock proteins

Nature Structural and Molecular Biology - Tập 12 Số 10 - Trang 842-846 - 2005
Martin Haslbeck1, Titus M. Franzmann1, Daniel Weinfurtner1, Johannes Büchner1
1Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching, Germany.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kappe, G., Leunissen, J.A. & De Jong, W.W. Evolution and diversity of prokaryotic small heat shock proteins. Prog. Mol. Subcell. Biol. 28, 1–17 (2002).

Waters, E.R., Lee, G.J. & Vierling, E. Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Bot. 47, 325–338 (1996).

Narberhaus, F. Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol. Mol. Biol. Rev. 66, 64–93 (2002).

Laksanalamai, P. & Robb, F.T. Small heat shock proteins from extremophiles: a review. Extremophiles 8, 1–11 (2004).

Allen, S.P., Polazzi, J.O., Gierse, J.K. & Easton, A.M. Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J. Bacteriol. 174, 6938–6947 (1992).

Horwitz, J. Alpha-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA 89, 10449–10453 (1992).

Horwitz, J. Alpha-crystallin. Exp. Eye Res. 76, 145–153 (2003).

Brady, J.P. et al. Targeted disruption of the mouse alpha A-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein alpha B-crystallin. Proc. Natl. Acad. Sci. USA 94, 884–889 (1997).

Stege, G.J. et al. The molecular chaperone alphaB-crystallin enhances amyloid beta neurotoxicity. Biochem. Biophys. Res. Commun. 262, 152–156 (1999).

Hsu, A.L., Murphy, C.T. & Kenyon, C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300, 1142–1145 (2003).

Clark, J.I. & Muchowski, P.J. Small heat-shock proteins and their potential role in human disease. Curr. Opin. Struct. Biol. 10, 52–59 (2000).

Latchman, D.S. Protection of neuronal and cardiac cells by HSP27. Prog. Mol. Subcell. Biol. 28, 253–265 (2002).

Kim, K.K., Kim, R. & Kim, S.H. Crystal structure of a small heat-shock protein. Nature 394, 595–599 (1998).

Kennaway, C.K. et al. Dodecameric structure of the small heat shock protein ACR1 from mycobacterium tuberculosis. J. Biol. Chem., published online 26 July 2005 (10.1074/jbc.M504263200).

Haslbeck, M. et al. Hsp26: a temperature-regulated chaperone. EMBO J. 18, 6744–6751 (1999).

van Montfort, R.L., Basha, E., Friedrich, K.L., Slingsby, C. & Vierling, E. Crystal structure and assembly of a eukaryotic small heat shock protein. Nat. Struct. Biol. 8, 1025–1030 (2001).

Haley, D.A., Horwitz, J. & Stewart, P.L. The small heat-shock protein, alphaB-crystallin, has a variable quaternary structure. J. Mol. Biol. 277, 27–35 (1998).

Haslbeck, M. & Buchner, J. Chaperone function of sHsps. Prog. Mol. Subcell. Biol. 28, 37–59 (2002).

Van Montfort, R., Slingsby, C. & Vierling, E. Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv. Protein Chem. 59, 105–156 (2001).

Candido, E.P. The small heat shock proteins of the nematode Caenorhabditis elegans: structure, regulation and biology. Prog. Mol. Subcell. Biol. 28, 61–78 (2002).

Haslbeck, M. et al. Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. EMBO J. 23, 638–649 (2004).

Narberhaus, F. & Haslbeck, M. Small heat shock proteins: dynamic players in the folding game. in Protein Folding Handbook (eds. Buchner, J. & Kiefhaber, T.) 830–857 (Wiley-VCH, Weinheim, Germany, 2005).

Pasta, S.Y., Raman, B., Ramakrishna, T. & Rao, C. The IXI/V motif in the C-terminal extension of alpha-crystallins: alternative interactions and oligomeric assemblies. Mol. Vis. 10, 655–662 (2004).

Petko, L. & Lindquist, S. Hsp26 is not required for growth at high temperatures, nor for thermotolerance, spore development, or germination. Cell 45, 885–894 (1986).

Ingolia, T.D. & Craig, E.A. Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. Proc. Natl. Acad. Sci. USA 79, 2360–2364 (1982).

Jakob, U., Gaestel, M., Engel, K. & Buchner, J. Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268, 1517–1520 (1993).

Studer, S. & Narberhaus, F. Chaperone activity and homo- and hetero-oligomer formation of bacterial small heat shock proteins. J. Biol. Chem. 275, 37212–37218 (2000).

Roy, S.K., Hiyama, T. & Nakamoto, H. Purification and characterization of the 16-kDa heat-shock-responsive protein from the thermophilic cyanobacterium Synechococcus vulcanus, which is an alpha-crystallin-related, small heat shock protein. Eur. J. Biochem. 262, 406–416 (1999).

Lee, G.J., Roseman, A.M., Saibil, H.R. & Vierling, E. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J. 16, 659–671 (1997).

Basha, E. et al. The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J. Biol. Chem. 279, 7566–7575 (2004).

Stromer, T., Ehrnsperger, M., Gaestel, M. & Buchner, J. Analysis of the interaction of small heat shock proteins with unfolding proteins. J. Biol. Chem. 278, 18015–18021 (2003).

Basha, E., Lee, G.J., Demeler, B. & Vierling, E. Chaperone activity of cytosolic small heat shock proteins from wheat. Eur. J. Biochem. 271, 1426–1436 (2004).

Nover, L., Scharf, K.D. & Neumann, D. Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol. Cell. Biol. 3, 1648–1655 (1983).

Stromer, T., Fischer, E., Richter, K., Haslbeck, M. & Buchner, J. Analysis of the regulation of the molecular chaperone Hsp26 by temperature-induced dissociation - The N-terminal domain is important for oligomer assembly and the binding of unfolding proteins. J. Biol. Chem. 279, 11222–11228 (2004).

Haslbeck, M. et al. A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization. J. Mol. Biol. 343, 445–455 (2004).

Friedrich, K.L., Giese, K.C., Buan, N.R. & Vierling, E. Interactions between small heat shock protein subunits and substrate in small heat shock protein-substrate complexes. J. Biol. Chem. 279, 1080–1089 (2004).

Giese, K.C. & Vierling, E. Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. J. Biol. Chem. 277, 46310–46318 (2002).

Lindner, R.A. et al. Mouse Hsp25, a small shock protein. The role of its C-terminal extension in oligomerization and chaperone action. Eur. J. Biochem. 267, 1923–1932 (2000).

Kokke, B.P., Leroux, M.R., Candido, E.P., Boelens, W.C. & De Jong, W.W. Caenorhabditis elegans small heat-shock proteins Hsp12.2 and Hsp12.3 form tetramers and have no chaperone-like activity. FEBS Lett. 433, 228–232 (1998).

van de Klundert, F.A. et al. The mammalian small heat-shock protein Hsp20 forms dimers and is a poor chaperone. Eur. J. Biochem. 258, 1014–1021 (1998).

Ehrnsperger, M., Graber, S., Gaestel, M. & Buchner, J. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 16, 221–229 (1997).

Stege, G.J., Li, G.C., Li, L., Kampinga, H.H. & Konings, A.W. On the role of hsp72 in heat-induced intranuclear protein aggregation. Int. J. Hyperthermia 10, 659–674 (1994).

Lee, G.J. & Vierling, E. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol. 122, 189–198 (2000).

Wang, K. & Spector, A. alpha-crystallin prevents irreversible protein denaturation and acts cooperatively with other heat-shock proteins to renature the stabilized partially denatured protein in an ATP-dependent manner. Eur. J. Biochem. 267, 4705–4712 (2000).

Veinger, L., Diamant, S., Buchner, J. & Goloubinoff, P. The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273, 11032–11037 (1998).

Matuszewska, M., Kuczynska-Wisnik, D., Laskowska, E. & Liberek, K. The small heat shock protein IbpA of Escherichia coli cooperates with IbpB in stabilization of thermally aggregated proteins in a disaggregation competent state. J. Biol. Chem. 280, 12292–12298 (2005).

Mogk, A., Deuerling, E., Vorderwulbecke, S., Vierling, E. & Bukau, B. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol. Microbiol. 50, 585–595 (2003).

Haslbeck, M., Miess, A., Stromer, T., Walter, S. & Buchner, J. Disassembling protein aggregates in the yeast cytosol: The cooperation of Hsp26 with Ssa1 and Hsp104. J. Biol. Chem. 280, 23861–23868 (2005).

Cashikar, A.G., Duennwald, M.L. & Lindquist, S.L. A chaperone pathway in protein disaggregation: Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J. Biol. Chem. 280, 23869–23875 (2005).

Buchner, J. & Walter, S. Analysis of chaperone function in vitro. in Protein Folding Handbook (eds. Buchner, J. & Kiefhaber, T.) 162–196 (Wiley-VCH, Weinheim, Germany, 2005).

Muchowski, P.J. & Clark, J.I. ATP-enhanced molecular chaperone functions of the small heat shock protein human alphaB crystallin. Proc. Natl. Acad. Sci. USA 95, 1004–1009 (1998).

Biswas, A. & Das, K.P. Role of ATP on the interaction of alpha-crystallin with its substrates and its implications for the molecular chaperone function. J. Biol. Chem. 279, 42648–42657 (2004).

Sobott, F., Benesch, J.L., Vierling, E. & Robinson, C.V. Subunit exchange of multimeric protein complexes. Real-time monitoring of subunit exchange between small heat shock proteins by using electrospray mass spectrometry. J. Biol. Chem. 277, 38921–38929 (2002).

Lentze, N., Aquilina, J.A., Lindbauer, M., Robinson, C.V. & Narberhaus, F. Temperature and concentration-controlled dynamics of rhizobial small heat shock proteins. Eur. J. Biochem. 271, 2494–2503 (2004).

Bova, M.P., Mchaourab, H.S., Han, Y. & Fung, B.K.K. Subunit exchange of small heat shock proteins - Analysis of oligomer formation of alpha A-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J. Biol. Chem. 275, 1035–1042 (2000).

Shashidharamurthy, R., Koteiche, H.A., Dong, J. & Mchaourab, H.S. Mechanism of chaperone function in small heat shock proteins: dissociation of the HSP27 oligomer is required for recognition and binding of destabilized T4 lysozyme. J. Biol. Chem. 280, 5281–5289 (2005).

Yang, H. et al. The Mycobacterium tuberculosis small heat shock protein Hsp16.3 exposes hydrophobic surfaces at mild conditions: conformational flexibility and molecular chaperone activity. Protein Sci. 8, 174–179 (1999).

Lindner, R.A., Kapur, A., Mariani, M., Titmuss, S.J. & Carver, J.A. Structural alterations of alpha-crystallin during its chaperone action. Eur. J. Biochem. 258, 170–183 (1998).

Mchaourab, H.S., Dodson, E.K. & Koteiche, H.A. Mechanism of chaperone function in small heat shock proteins. Two-mode binding of the excited states of T4 lysozyme mutants by alphaA-crystallin. J. Biol. Chem. 277, 40557–40566 (2002).

Franzmann, T.M., Wühr, M., Richter, K., Walter, S. & Buchner, J. The activation mechanism of Hsp26 does not require dissociation of the oligomer. Dissociation is not required. J. Mol. Biol. 350, 1083–1093 (2005).

Aquilina, J.A. et al. Subunit exchange of polydisperse proteins: mass spectrometry reveals consequences of alphaA-crystallin truncation. J. Biol. Chem. 280, 14485–14491 (2005).

Ehrnsperger, M., Lilie, H., Gaestel, M. & Buchner, J. The dynamics of Hsp25 quaternary structure. Structure and function of different oligomeric species. J. Biol. Chem. 274, 14867–14874 (1999).

Koteiche, H.A. & Mchaourab, H.S. Mechanism of chaperone function in small heat-shock proteins. Phosphorylation-induced activation of two-mode binding in alpha B-crystallin. J. Biol. Chem. 278, 10361–10367 (2003).

Gaestel, M. sHsp-phosphorylation: enzymes, signaling pathways and functional implications. Prog. Mol. Subcell. Biol. 28, 151–169 (2002).

Smulders, R.H. et al. The mutation Asp69→Ser affects the chaperone-like activity of alpha A-crystallin. Eur. J. Biochem. 232, 834–838 (1995).

Lentze, N. & Narberhaus, F. Detection of oligomerisation and substrate recognition sites of small heat shock proteins by peptide arrays. Biochem. Biophys. Res. Commun. 325, 401–407 (2004).

Ehrnsperger, M., Hergersberg, C., Wienhues, U., Nichtl, A. & Buchner, J. Stabilization of proteins and peptides in diagnostic immunological assays by the molecular chaperone Hsp25. Anal. Biochem. 259, 218–225 (1998).

Kim, R. et al. On the mechanism of chaperone activity of the small heat-shock protein of Methanococcus jannaschii. Proc. Natl. Acad. Sci. USA 100, 8151–8155 (2003).

Lee, S., Owen, H.A., Prochaska, D.J. & Barnum, S.R. HSP16.6 is involved in the development of thermotolerance and thylakoid stability in the unicellular cyanobacterium, Synechocystis sp PCC 6803. Curr. Microbiol. 40, 283–287 (2000).