Some generalized theorems onp-hyponormal operators

Springer Science and Business Media LLC - Tập 24 - Trang 497-501 - 1996
Ariyadasa Aluthge1
1Department of Mathematics, Marshall University, Huntington, U.S.A.

Tóm tắt

A bounded linear operatorT is calledp-Hyponormal if (T *T)p≥(TT *)p, 0

Tài liệu tham khảo

A. Aluthge, On p-hyponormal operators for 0<p<1, Journal of Integral Equations and Operator Theory, 13(1990), 307–315. M. Chō, Spectral properties of p-hyponormal operators, Glasgow Mathematical Journal, Vol. 36(1994), 117–122. M. Chō and M. Itoh, Putnam's inequality for p-hyponormal operators, Proc. Amer. Math. Soc., to appear. M. Chō and M. Itoh, On the angular cutting for p-hyponormal operators, Acta Sci. Math. (Szeged), to appear. M. Chō and M. Itoh, On spectra of p-hyponormal operators, Journal of Integral Equations and Operator Theory, to appear. M. Chō, M. Itoh and T. Huruya, Spectra of completely p-hyponormal operators, to appear M. Chō and T. Huruya, p-Hyponormal operators for 0<p<1/2, Commoentatione Mathematicae XXXIII(1993), 23–29. T. Furta,A≥B≥0 assures (B rApBr)1/q≥B(p+2r)/q and A(p+2r)/q≥(ArBpAr)1/q for r≥0,q≥1 with (1+2r)q≥p+2r, Proc. Amer. Math. Soc. 101(1987), 85–88. K. Löwner, Uber monotone matrix functione, Math. Z. 38(1934), 177–216. M. Martin and M. Putinar, Lectures on Hyponormal Operators, Birkhauser Verlag, Boston, 1989 G.K. Pederson, and M. Takesak, The operator equation THT=K, Proc. Amer. Math. Soc. 36(1972), 311–312. J. G. Stampfli, Hyponormal operators and spectral density, Tran. Amer. Math. Soc. 117(1965), 469–476. D. Xia, On the nonnormal operators-semihyponormal operators, Sci. Sinica 23(1980), 700–713. D. Xia, Spectral Theory of Hyponormal Operators, Birkhauser Verlag, Boston, 1983.