Some generalized theorems onp-hyponormal operators
Tóm tắt
A bounded linear operatorT is calledp-Hyponormal if (T
*T)p≥(TT
*)p, 0
Tài liệu tham khảo
A. Aluthge, On p-hyponormal operators for 0<p<1, Journal of Integral Equations and Operator Theory, 13(1990), 307–315.
M. Chō, Spectral properties of p-hyponormal operators, Glasgow Mathematical Journal, Vol. 36(1994), 117–122.
M. Chō and M. Itoh, Putnam's inequality for p-hyponormal operators, Proc. Amer. Math. Soc., to appear.
M. Chō and M. Itoh, On the angular cutting for p-hyponormal operators, Acta Sci. Math. (Szeged), to appear.
M. Chō and M. Itoh, On spectra of p-hyponormal operators, Journal of Integral Equations and Operator Theory, to appear.
M. Chō, M. Itoh and T. Huruya, Spectra of completely p-hyponormal operators, to appear
M. Chō and T. Huruya, p-Hyponormal operators for 0<p<1/2, Commoentatione Mathematicae XXXIII(1993), 23–29.
T. Furta,A≥B≥0 assures (B rApBr)1/q≥B(p+2r)/q and A(p+2r)/q≥(ArBpAr)1/q for r≥0,q≥1 with (1+2r)q≥p+2r, Proc. Amer. Math. Soc. 101(1987), 85–88.
K. Löwner, Uber monotone matrix functione, Math. Z. 38(1934), 177–216.
M. Martin and M. Putinar, Lectures on Hyponormal Operators, Birkhauser Verlag, Boston, 1989
G.K. Pederson, and M. Takesak, The operator equation THT=K, Proc. Amer. Math. Soc. 36(1972), 311–312.
J. G. Stampfli, Hyponormal operators and spectral density, Tran. Amer. Math. Soc. 117(1965), 469–476.
D. Xia, On the nonnormal operators-semihyponormal operators, Sci. Sinica 23(1980), 700–713.
D. Xia, Spectral Theory of Hyponormal Operators, Birkhauser Verlag, Boston, 1983.