Some generalizations of ascent and descent for linear operators

Arabian Journal of Mathematics - Tập 10 - Trang 367-393 - 2021
Zied Garbouj1,2
1Institut Supérieur des Sciences Appliquées et de Technologie de Kairouan, Université de Kairouan, Kairouan, Tunisie
2Département de Mathématiques, Route périphérique Dar El Amen, Kairouan, Tunisie

Tóm tắt

The purpose of this paper is to present in linear spaces some results for new notions called A-left (resp., A-right) ascent and A-left (resp., A-right) descent of linear operators (where A is a given operator) which generalize two important notions in operator theory: ascent and descent. Moreover, if A is a positive operator, we obtain several properties of ascent and descent of an operator in semi-Hilbertian spaces. Some basic properties and many results related to the ascent and descent for a linear operator on a linear space Kaashoek (Math Ann 172:105–115, 1967), Taylor (Math Ann 163:18–49, 1966) are extended to these notions. Some stability results under perturbations by compact operators and operators having some finite rank power are also given for these notions.

Tài liệu tham khảo

Andruchow, E.; Corach, G.; Mbekhta, M.: Split Partial Isometries. Complex Anal. Oper. Theory. 7, 813–829 (2013) Arias, M.L.; Corach, G.; Gonzalez, M.C.: Partial isometries in semi-Hilbertian spaces. Linear Algebra Appl. 428, 1460–1475 (2008) Arias, M.L.; Mbekhta, M.: A-partial isometries and generalized inverses. Linear Algebra Appl. 439, 1286–1293 (2013) Douglas, R.G.: On majorization, factorization and range inclusion of operators in Hilbert space. Proc. Amer. Math. Soc. 17, 413–416 (1966) Fongi, G.; Gonzaleza, M.C.: Partial isometries and pseudoinverses insemi-Hilbertian spaces. Linear Algebra Appl. 495, 324–343 (2016) Z. Garbouj, H. Skhiri, Semi-generalized partial isometries. Results Math. 75, 15 (2020) H. Heuser, Über Operatoren mit endlichen Defekten. Inaugural-Dissertation, Universitüt Tübingen (1956) M. A. Kaashoek, Ascent, descent, nullity and defect, a note on a paper by A. E. Taylor. Math. Ann. 172, 105–115 (1967) Kaashoek, M.A.; Lay, D.C.: Ascent, descent, and commuting perturbations. Trans. Amer. Math. Soc. 169, 35–47 (1972) Carlos, S.: Kubrusly, Hilbert space operators: a problem solving approach. Birkhäuser, Boston (2003) Lay, D.C.; Taylor, A.E.: Introduction to Functional Analysis, 2nd edn. John Wiley & Sons, New York (1980) Riesz, F.: Uber lineare Functionalgleichungen. Acta Math. 41, 71–98 (1918) Salhi, A.; Zerouali, E.H.: Decomposition of partial isometries with finite ascent. Adv. Oper. Theory. 5, 64–82 (2020) Sandovici, A.; de Snoo, H.; Winkler, H.: Ascent, descent, nullity, defect, and related notions for linear relations in linear spaces. Linear Algebra Appl. 423, 456–497 (2007) Sid Ahmed, O.A.M.; Saddi, A.: A-m-isometric operators in semi-Hilbertian spaces. Linear Algebra Appl. 436, 3930–3942 (2012) Suciu, L.: Quasi-isometries in semi-Hilbertian spaces. Linear Algebra Appl. 430, 2474–2487 (2009) Suciu, L.: Some invariant subspaces for A-contractions and applications. Extracta Math. 21(3), 221–247 (2006) Taylor, A.E.: Theorems on Ascent, Descent, Nullity and Defect of Linear Operators. Math. Ann. 163, 18–49 (1966) Taylor, A.E.: Introduction to Functional Analysis. John Wiley & Sons, New York (1958)