Some exact results for generalized Turán problems
Tài liệu tham khảo
Alon, 2016, Many T copies in H-free graphs, J. Combin. Theory Ser. B, 121, 146, 10.1016/j.jctb.2016.03.004
Bollobás, 2008, Pentagons vs triangles, Discrete Math., 308, 4332, 10.1016/j.disc.2007.08.016
Cutler, 2019
Erdős, 1962, On the number of complete subgraphs contained in certain graphs, Magyar Tud. Akad. Mat. KutatÓInt. KÖzl., 7, 459
Erdős, 1995, Extremal graphs for intersecting triangles, J. Combin. Theory Ser. B, 64, 89, 10.1006/jctb.1995.1026
Erdős, 1966, A limit theorem in graph theory, Studia Sci. Math. Hungar., 1, 51
Erdős, 1946, On the structure of linear graphs, Bull. Am. Math. Soc., 52, 1087, 10.1090/S0002-9904-1946-08715-7
Ergemlidze, 2019, A note on the maximum number of triangles in a C5-free graph, J. Graph Theory, 90, 227, 10.1002/jgt.22390
Ergemlidze, 2018
Gerbner, 2020
Gerbner, 2019, Generalized turán problems for even cycles, J. Combin. Theory Ser. B, 145, 169, 10.1016/j.jctb.2020.05.005
Gerbner, 2019, Generalized Turán problems for disjoint copies of graphs, Discrete Math., 342, 3130, 10.1016/j.disc.2019.06.022
Gerbner, 2019, Counting copies of a fixed subgraph in F-free graphs, European J. Combin., 82, 10.1016/j.ejc.2019.103001
Gishboliner, 2020, A generalized turán problem and its applications, Int. Math. Res. Notices (IMRN), 11, 3417, 10.1093/imrn/rny108
Grzesik, 2012, On the maximum number of five-cycles in a triangle-free graph, J. Combin. Theory Ser. B, 102, 1061, 10.1016/j.jctb.2012.04.001
Guiduli, 1996
Győri, 1989, On the number of C5’s in a triangle-free graph, Combinatorica, 9, 101, 10.1007/BF02122689
Győri, 2011, The maximum number of triangles in C2k+1-free graphs, Combin. Probab. Comput., 21, 187, 10.1017/S0963548311000629
Győri, 1991, On the maximal number of certain subgraphs in Kr-free graphs, Graphs Combin., 7, 31, 10.1007/BF01789461
Győri, 2019, The maximum number of Pℓ copies in Pk-free graphs, Discrete Math. Theor. Comput. Sci., 21, 21
Hatami, 2012, On the number of pentagons in triangle-free graphs, J. Combin. Theory Ser. A, 120, 722, 10.1016/j.jcta.2012.12.008
Ma, 2020, Some sharp results on the generalized Turán numbers, European J. Combin., 84, 10.1016/j.ejc.2019.103026
Nikiforov, 2009, A spectral erdős-Stone-Bollobás theorem, Combin. Probab. Comput., 18, 455, 10.1017/S0963548309009687
Pippenger, 1975, The inducibility of graphs, J. Comb. Theory Ser. B, 19, 189, 10.1016/0095-8956(75)90084-2
Simonovits, 1966, A method for solving extremal problems in graph theory, stability problems, 279
Turán, 1941, On an extremal problem in graph theory (in hungarian), Mat. Fizikai Lapok, 48, 436
Zykov, 1949, On some properties of linear complexes, Mat. Sb., 66, 163