Some criteria for supersolubility in products of finite groups
Tóm tắt
Let H and T be subgroups of a finite group G. H is said to be permutable with T in G if HT = TH. In this paper, we use the concept of permutable subgroups to give two new criterions of supersolubility of the product G = AB of finite supersoluble groups A and B.
Tài liệu tham khảo
Alejandre M, Ballester-Bolinches A, Cossey J. Permutable products of supersoluble groups. J Algebra, 2004, 276: 453–461
Asaad M, Shaalan A. On the supersolvability of finite groups. Arch Math, 1989, 53: 318–326
Baer R. Classes of finite groups and their properties. Illinois J Math, 1957, 1: 115–187
Ballester-Bolinches A, Cossey J, Pedraza-Aguilera M C. On products of finite supersoluble groups. Com Algebra, 2001, 29(7): 3145–3152
Ballester-Bolinches A, Perez-Ramos M D, Pedraza-Aguilera M C. Mutually permutable products of finite groups. J Algebra, 1999, 213: 369–377
C̆unihin S A. Simplicité de groupe fini et les ordres da ses classes d’éléments conjugués. Comptes Rendus Acad Sci Paris, 1930, 191: 397–399
Friesen D. Products of normal supersoluble subgroups. Proc Amer Math Soc, 1971, 30: 46–48
Guo W. The Theory of Classes of Groups. Beijing, New York, Dordrecht, Boston, London: Science Press-Kluwer Academic Publishers, 2000
Guo W, Shum K P, Skiba A. Criterions of supersolubility for products of supersoluble groups. Publ Math Debrecen, 2006, 68(3–4): 433–449
Hauck P, Martinez-Pastor A, Perez-Ramos M D. Fitting classes and products of totally permutable groups. J Algebra, 2002, 252: 114–126
Huppert B. Endliche Gruppen I. Berlin, Heidelberg, New York: Springer-Verlag, 1967
Liu X, Shi L, Yang N. Permutable products of finite supersoluble groups. J Xuzhou Normal University, 2008, 26(1) (in press)
Weinstein M. Between Nilpotent and Solvable. Passaic: Polygonal Publishing House, 1982