Some computational aspects of Gaussian CARMA modelling

Helgi Tómasson1
1Faculty of Economics, University of Iceland, Reykjavík, Iceland

Tóm tắt

Representation of continuous-time ARMA (Auto-Regressive-Moving-Average), CARMA, time-series models is reviewed. Computational aspects of simulating and calculating the likelihood-function of CARMA models are summarized. Some numerical properties are illustrated by simulations. Methods for enforcing the stationarity restriction on the parameter space are discussed. Due to such methods restricted numerical estimation enforcing stationarity is possible. The impact of scaling of time axis on the magnitude of the parameters is demonstrated. Proper scaling of the time axis can give parameter values of similar magnitude which is useful for numerical work. The practicality of the computational approach is illustrated with some real and simulated data.

Từ khóa


Tài liệu tham khảo

Belcher, J., Hampton, J., Tunnicliffe Wilson, G.: Parameterization of continuous autoregressive models for irregularly sampled time series data. J. R. Stat. Soc. B 56(1), 141–155 (1994)

Bergstrom, A.R.: The history of continuous-time econometric models. Econom. Theory 4, 365–383 (1988)

Box, G.E.P., Jenkins, G.M.: Time Series Analysis, Forecasting and Control. Holden Day, San Fransisco (1970)

Brockwell, P., Chadraa, E., Lindner, A.: Continuous-time GARCH processes. Ann. Probab. 16(2), 790–826 (2006)

Brockwell, P.J.: Levi-driven continuous-time ARMA processes. In: Andersen, T.G., Davis, R.A., Kreiss, J.P., Mikosch, T. (eds.) Handbook of Financial Time Series, pp. 457–480. Springer, Berlin (2009)

Chan, K., Tong, H.: A note on embedding a discrete time ARMA model in a continuous parameter ARMA model. J. Time Ser. Anal. 8, 277–281 (1987)

Engle, R.F., Russel, J.R.: Autoregressive conditional duration: a new model for irregularly spaced data. Econometrica 66(5), 1127–1162 (1998)

Greengard, L., Lee, J.Y.: Accelerating the nonuniform fast Fourier transform. SIAM Rev. 46(3), 443–454 (2004)

Jouzel, J., et al.: Epica dome c ice core 800 kyr deuterium data and temperature estimates. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2007-091. NOAA/NCDC Paleoclimatology Program (2007)

Kutoyants, Y.A.: Statistical Inference for Ergodic Diffusion Processes. Springer, London (2004)

Larsson, E.K., Mossberg, M., Söderström, T.: Identification of continuous-time ARX models from irregularly sampled data. IEEE Trans. Autom. Control 52(3), 417–427 (2007)

Mahata, K., Fu, M.: Modelling continuous-time processes via input-to-state filters. Automatica 42, 1073–1084 (2006)

Masry, E.: Alias-free sampling: an alternative conceptualization and its applications. IEEE Trans. Inf. Theory 24(3), 317–324 (1978a)

Masry, E.: Poisson sampling and spectral estimation of continuous-time processes. IEEE Trans. Inf. Theory 24(2) (1978b)

Masry, E.: Poisson sampling and spectral estimation of continuous-time processes. IEEE Trans. Inf. Theory 24(2), 173–183 (1978c)

Mikosch, T., Gadrich, T., Kluppelberg, C., Adler, R.J.: Parameter estimation for ARMA models with infinite variance innovations. Ann. Stat. 23(1), 305–326 (1995)

Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 1–46 (2003)

Monahan, J.F.: A note on enforcing stationarity in autoregressive-moving average models. Biometrika 71(2), 403–404 (1984)

Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 5th edn. Springer, Berlin (1998)

Phadke, M., Wu, S.: Modeling of continuous stochastic processes from discrete observations with application to sunspots data. J. Am. Stat. Assoc. 69(346), 325–329 (1974)

Pham, D.T., Breton, A.L.: Levinson-Durbin-type algorithms for continuous-time autoregressive models and applications. Math. Control Signals Syst. 4(1), 69–79 (1991)

Priestley, M.: The spectrum of a continuous process derived from a discrete process. Biometrika 50, 517–520 (1963)

Priestley, M.: Spectral Analysis and Time Series. Academic Press, New York (1981)

R Development Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2011). http://www.R-project.org, ISBN 3-900051-07-0

Rice, S.: Mathematical Analysis of Random Noise. Monograph B-1589. Bell Telephone Labs Inc., New York (1954)

Sun, T., Chaika, M.: On simulation of a Gaussian stationary process. J. Time Ser. Anal. 18(1), 79–93 (1997)

Thornton, M.A., Chambers, M.J.: Continuous-time autoregressive moving average processes in discrete time: representation and embeddability. J. Time Ser. Anal. 34(5), 552–561 (2013)

Tsai, H., Chan, K.: A note on the covariance structure of a continuous-time ARMA process. Stat. Sin. 10, 989–998 (2000)

Tsai, H., Chan, K.: A note on parameter differentiation of matrix exponentials, with application to continuous time modelling. Bernoulli 9(5), 895–919 (2003)

Tsay, R.S.: Analysis of Financial Time Series, 3rd edn. Wiley, New York (2010)

Zadrozny, P.: Gaussian likelihood of continuous-time ARMAX models when data are stocks and flows at different frequencies. Econom. Theory 4(1), 108–124 (1988)