Some computational aspects of Gaussian CARMA modelling
Tóm tắt
Từ khóa
Tài liệu tham khảo
Belcher, J., Hampton, J., Tunnicliffe Wilson, G.: Parameterization of continuous autoregressive models for irregularly sampled time series data. J. R. Stat. Soc. B 56(1), 141–155 (1994)
Bergstrom, A.R.: The history of continuous-time econometric models. Econom. Theory 4, 365–383 (1988)
Box, G.E.P., Jenkins, G.M.: Time Series Analysis, Forecasting and Control. Holden Day, San Fransisco (1970)
Brockwell, P., Chadraa, E., Lindner, A.: Continuous-time GARCH processes. Ann. Probab. 16(2), 790–826 (2006)
Brockwell, P.J.: Levi-driven continuous-time ARMA processes. In: Andersen, T.G., Davis, R.A., Kreiss, J.P., Mikosch, T. (eds.) Handbook of Financial Time Series, pp. 457–480. Springer, Berlin (2009)
Chan, K., Tong, H.: A note on embedding a discrete time ARMA model in a continuous parameter ARMA model. J. Time Ser. Anal. 8, 277–281 (1987)
Engle, R.F., Russel, J.R.: Autoregressive conditional duration: a new model for irregularly spaced data. Econometrica 66(5), 1127–1162 (1998)
Greengard, L., Lee, J.Y.: Accelerating the nonuniform fast Fourier transform. SIAM Rev. 46(3), 443–454 (2004)
Jouzel, J., et al.: Epica dome c ice core 800 kyr deuterium data and temperature estimates. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2007-091. NOAA/NCDC Paleoclimatology Program (2007)
Kutoyants, Y.A.: Statistical Inference for Ergodic Diffusion Processes. Springer, London (2004)
Larsson, E.K., Mossberg, M., Söderström, T.: Identification of continuous-time ARX models from irregularly sampled data. IEEE Trans. Autom. Control 52(3), 417–427 (2007)
Mahata, K., Fu, M.: Modelling continuous-time processes via input-to-state filters. Automatica 42, 1073–1084 (2006)
Masry, E.: Alias-free sampling: an alternative conceptualization and its applications. IEEE Trans. Inf. Theory 24(3), 317–324 (1978a)
Masry, E.: Poisson sampling and spectral estimation of continuous-time processes. IEEE Trans. Inf. Theory 24(2) (1978b)
Masry, E.: Poisson sampling and spectral estimation of continuous-time processes. IEEE Trans. Inf. Theory 24(2), 173–183 (1978c)
Mikosch, T., Gadrich, T., Kluppelberg, C., Adler, R.J.: Parameter estimation for ARMA models with infinite variance innovations. Ann. Stat. 23(1), 305–326 (1995)
Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 1–46 (2003)
Monahan, J.F.: A note on enforcing stationarity in autoregressive-moving average models. Biometrika 71(2), 403–404 (1984)
Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 5th edn. Springer, Berlin (1998)
Phadke, M., Wu, S.: Modeling of continuous stochastic processes from discrete observations with application to sunspots data. J. Am. Stat. Assoc. 69(346), 325–329 (1974)
Pham, D.T., Breton, A.L.: Levinson-Durbin-type algorithms for continuous-time autoregressive models and applications. Math. Control Signals Syst. 4(1), 69–79 (1991)
Priestley, M.: The spectrum of a continuous process derived from a discrete process. Biometrika 50, 517–520 (1963)
Priestley, M.: Spectral Analysis and Time Series. Academic Press, New York (1981)
R Development Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2011). http://www.R-project.org, ISBN 3-900051-07-0
Rice, S.: Mathematical Analysis of Random Noise. Monograph B-1589. Bell Telephone Labs Inc., New York (1954)
Sun, T., Chaika, M.: On simulation of a Gaussian stationary process. J. Time Ser. Anal. 18(1), 79–93 (1997)
Thornton, M.A., Chambers, M.J.: Continuous-time autoregressive moving average processes in discrete time: representation and embeddability. J. Time Ser. Anal. 34(5), 552–561 (2013)
Tsai, H., Chan, K.: A note on the covariance structure of a continuous-time ARMA process. Stat. Sin. 10, 989–998 (2000)
Tsai, H., Chan, K.: A note on parameter differentiation of matrix exponentials, with application to continuous time modelling. Bernoulli 9(5), 895–919 (2003)
Tsay, R.S.: Analysis of Financial Time Series, 3rd edn. Wiley, New York (2010)
Zadrozny, P.: Gaussian likelihood of continuous-time ARMAX models when data are stocks and flows at different frequencies. Econom. Theory 4(1), 108–124 (1988)