Some characteristics of S transforms in a class of rapidly decreasing Boehmians

Shrideh Al‐Omari1
1Department of Applied Sciences, Faculty of Engineering Technology, Al-Balqa’ Applied University, Amman, Jordan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Stockwell, R.G., Mansinha, L., Lowe, R.P.: Localization of the complex spectrum: the S transform. IEEE Trans. Signal Process. 44(4), 998–1001 (1996)

Singh, S.K.: The S-Transform on spaces of type W. Integral Trans. Spec. Func. 23(12), 891–899 (2012)

Singh, S.K.: The S-transform on spaces of type. Integral Trans. Spec. Func. 23(7), 481–494 (2012)

Melnikova, I.V., Alshanskiy, M.A.: S-transform and Hermite transform of Hilbert space-valued stochastic distributions with applications to stochastic differential equations. Integral Trans. Spec. Func. 22, 4–5 (2011)

Singh, S.K.: The S-transform of distributions. Sci. World J. 2014(623294), 1–4 (2014)

Pathak, R.S.: Integral transforms of generalized functions and their applications. Gordon and Breach Science Publishers, Australia, Canada, India, Japan (1997)

Mikusinski, P.: Fourier transform for integrable Boehmians. Rocky Mt. J. Math. 17(3), 577–582 (1987)

Boehme, T.K.: The support of Mikusinski operators. Tran. Am. Math. Soc. 176, 319–334 (1973)

Al-Omari, S.K.Q.: Hartley transforms on certain space of generalized functions. Georgian Math. J. 20(3), 415–426 (2013)

Al-Omari, S.K.Q., Kilicman, A.: Note on Boehmians for class of optical Fresnel wavelet transforms. J. Func. Space Appl. 2012(405368), 1–13 (2012). doi: 10.1155/2012/405368

Al-Omari, S.K.Q., Kilicman, A.: On generalized Hartley–Hilbert and Fourier–Hilbert transforms. Adv. Differ. Equ. 2012(232), 1–12 (2012). doi: 10.1186/1687-1847-2012-232

Karunakaran, V., Vembu, R.: On point values of Boehmians. Rocky Mt. J. Math. 35, 181–193 (2005)

Zemanian, A.H.: Distribution theory and transform analysis, Dover Publications Inc. New York. First Published by McGraw-Hill, Inc., New York (1965)