Some aspects of m-adic analysis and its applications to m-adic stochastic processes
Tóm tắt
Từ khóa
Tài liệu tham khảo
W. H. Schikhof, Ultrametric Calculus. An Introduction to p-Adic Analysis (Cambridge Univ. Press, Cambridge, 1984).
V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (World Scient. Publ., Singapore, 1994).
R. Rammal, G. Toulouse and M. A. Virasoro, “Ultrametricity for physicists,” Rev. Mod. Phys. 589, 765–788 (1986).
B. Dragovich, A. Yu. Khrennikov, S.V. Kozyrev and I.V. Volovich, “On p-adicmathematical physics,” p-Adic Numbers, Ultrametric Analysis and Applications 1(1), 1–17 (2009).
A. T. Ogielski and D. L. Stein, “Dynamics on ultrametric spaces,” Phys. Rev. Lett. 55, 1634–1637 (1985).
V. A. Avetisov, A. Kh. Bikulov, S. V. Kozyrev and V. A. Osipov, “p-Adic models of ultrametric diffusion constrained by hierarchical energy landscapes,” J. Phys. A: Math.Gen. 35(2), 177–189 (2002).
V. A. Avetisov, A. Kh. Bikulov and S. V. Kozyrev, “Application of p-adic analysis to models of spontaneous breaking of replica symmetry,” J. Phys. A:Math. Gen. 32(50), 8785–8791 (1999).
V. A. Avetisov, A. Kh. Bikulov and V. A. Osipov, “p-Adic description of characteristic relaxation in complex systems,” J. Phys. A: Math. Gen. 36(15), 4239–4246 (2003).
V. A. Avetisov, A. Kh. Bikulov and A. P. Zubarev, “First passage time distribution and the number of returns for ultrametric random walks. J. Phys. A:Math. Theor. 42, 085003–085020 (2009).
R. N. Mantenga, “Hierarchical structure in financial market,” Eur. Phys. J. B 11, 193–197 (1999).
R. N. Mantenga and H. E. Stanley, An Introduction to Econophysics. Correlations and Complexity in Finance (Cambridge Univ. Press, Cambridge, 2000).
A. Kh. Bikulov, A. P. Zubarev and L. V. Kaidalova, “Hierarchical dynamicmodel of financialmarket near crash points and p-adic mathematical analysis,” Proc. Samara State Tech. Univ. 42, 135–141 (2006) [in Russian].
S. V. Kozyrev and A. Yu. Khrennikov, “Pseudodifferential operators on ultrametric spaces and ultrametric wavelets,” Izv. RAN. Ser. Mat. 69(5), 133–148 (2005).
A. Yu. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Kluwer Acad. Publ., Dordreht, 1997).
V. S. Vladimirov, “Tables of integrals of complex-valued functions of p-adic arguments,” arXiv:mathph/9911027.
A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, I, II. (Dover Publ., Mineola, NY, 1999).
G. E. Shilov, Mathematical Analysis 1, 2 (M.I.T., 1974).
K. R. Parthasarathy, ProbabilityMeasure on Metric Spaces (Academic Press Inc., London, 1967).
A. N. Kochubei, Pseudo-Differential Equations and Stochastics over Non-Archimedean Fields (Marcel Dekker, New York, 2001).
A. N. Kochubei, “p-Adic spherical coordinates and their applications,” p-Adic Numbers, Ultrametric Analysis and Applications 1(2), 157–166 (2009).
R. Gorenflo and F. Mainardi, “Continuous time random walk, Mittag-Leffler waiting time and fractional diffusion: mathematical aspects,” Chap. 4., pp. 93–127, in Anomalous Transport: Foundations and Applications, Eds. R. Klages, G. Radons and I.M. Sokolov (Wiley-VCH, Weinheim, Germany, 2008).
E. Scalas, R. Gorenflo and F. Mainardi, “Uncoupled continuous-time random walks: solution and limiting behavior of the master equation,” Phys. Rev. E 69, 011107–011114 (2004).
W. Feller, An Introduction to Probability Theory and its Applications, Vol. II. Second Edition. Wiley, New York, 1971.
M. Caputo and F. Mainardi, “Linear Models of dissipation in anelastic solids,” Riv. Nuovo Cimento (Ser. II), 1, 161–198 (1971).
E. Hewitt and K. A. Ross, Abstract Harmonic Analysis (Springer-Verlag, 1987).