Some arithmetic properties of order-sequences of algebraic curves

Journal of Pure and Applied Algebra - Tập 85 - Trang 259-269 - 1993
Arnaldo Garcia1
1Instituto de Matemática Pura e Aplicada, Estrada D. Castorina, 110 J. Botânico, 22460 Rio de Janeiro, Brazil

Tài liệu tham khảo

E. Esteves, A geometric proof of an inequality of order-sequences, Comm. Algebra, to appear. Garcia, 1991, Duality for projective curves, Bol. Soc. Bras. Mat., 21, 159, 10.1007/BF01237362 A. Hefez and N. Kakuta, On the geometry of non-classical curves, Bol. Soc. Bras. Mat. (N.S.), to appear. Homma, 1990, Reflexivity of tangent varieties associated with a curve, Ann. Mat. Pura Appl., 156, 195, 10.1007/BF01766979 M. Homma, Linear systems on curves with no Weierstrass points, Bol. Soc. Bras. Mat. (N.S.), to appear. H. Kaji, Strangeness of higher order for space curves, Preprint. Laksov, 1984, Wronskians and Plücker formulas for linear systems on curves, Ann. Sci. École Norm. Sup., 17, 45, 10.24033/asens.1465 Matzat, 1972, Über Weierstrasspunkte von Fermatkörpern Schmidt, 1939, Zur arithmetischen Theorie der algebraischen Funktionen II, Math. Z., 45, 75, 10.1007/BF01580274 Schmidt, 1939, Die Wronskische Determinante in beliebigen differenzierbaren Funktionenkörpern, Math. Z., 45, 62, 10.1007/BF01580273 Stöhr, 1986, Weierstrass points and curves over finite fields, Proc. London Math. Soc., 52, 1, 10.1112/plms/s3-52.1.1