Some Notes on Endpoint Estimates for Pseudo-differential Operators

Mediterranean Journal of Mathematics - Tập 19 - Trang 1-14 - 2022
Jingwei Guo1, Xiangrong Zhu2
1Department of Mathematics, University of Science and Technology of China, Hefei, China
2Department of Mathematics, Zhejiang Normal University, Jinhua, China

Tóm tắt

We study the pseudo-differential operator $$\begin{aligned} T_a f\left( x\right) =\int _{\mathbb {R}^n}e^{ix\cdot \xi }a\left( x,\xi \right) \widehat{f}\left( \xi \right) \,\text {d}\xi , \end{aligned}$$ where the symbol a is in the Hörmander class $$S^{m}_{\rho ,1}$$ or more generally in the rough Hörmander class $$L^{\infty }S^{m}_{\rho }$$ with $$m\in \mathbb {R}$$ and $$\rho \in [0,1]$$ . It is known that $$T_a$$ is bounded on $$L^1(\mathbb {R}^n)$$ for $$m

Tài liệu tham khảo

Álvarez, J., Hounie, J.: Estimates for the kernel and continuity properties of pseudo-differential operators. Ark. Mat. 28(1), 1–22 (1990) Ching, C.H.: Pseudo-differential operators with nonregular symbols. J. Differ. Equ. 11, 436–447 (1972) Duoandikoetxea, J.: Fourier Analysis. Translated and Revised from the 1995 Spanish Original by David Cruz-Uribe. Graduate Studies in Mathematics, 29. American Mathematical Society, Providence, RI (2001) Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, 250, 2nd edn. Springer, New York (2009) Hörmander, L.: Pseudo-differential operators. Commun. Pure Appl. Math. 18, 501–517 (1965) Hörmander, L.: Pseudo-differential operators and hypoelliptic equations, Singular integrals (Proc. Sympos. Pure Math., Vol. X, Chicago, Ill.,: 138–183, p. 1967. American Mathematical Society, Providence, RI (1966) Hörmander, L.: On the \(L^{2}\) continuity of pseudo-differential operators. Commun. Pure Appl. Math. 24, 529–535 (1971) Hounie, J.: On the \(L^2\)-continuity of pseudo-differential operators. Commun. Partial Differ. Equ. 11(7), 765–778 (1986) Kenig, C.E., Staubach, W.: \(\Psi \)-pseudodifferential operators and estimates for maximal oscillatory integrals. Studia Math. 183(3), 249–258 (2007) Kohn, J.J., Nirenberg, L.: An algebra of pseudo-differential operators. Commun. Pure Appl. Math. 18, 269–305 (1965) Rodino, L.: On the boundedness of pseudo differential operators in the class \(L^{m}_{\rho ,1}\). Proc. Am. Math. Soc. 58, 211–215 (1976) Rodríguez-López, S., Staubach, W.: Estimates for rough Fourier integral and pseudodifferential operators and applications to the boundedness of multilinear operators. J. Funct. Anal. 264(10), 2356–2385 (2013) Seeger, A., Sogge, C.D., Stein, E.M.: Regularity properties of Fourier integral operators. Ann. Math. (2) 134(2), 231–251 (1991) Stefanov, A.: Pseudodifferential operators with rough symbols. J. Fourier Anal. Appl. 16(1), 97–128 (2010) Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, with the Assistance of Timothy S. Murphy. Princeton Mathematical Series, 43 Monographs in Harmonic Analysis III. Princeton University Press, Princeton, NJ (1993) Taylor, M.E.: Pseudodifferential Operators and Nonlinear PDE, Progress in Mathematics, 100. Birkhäuser, Boston, MA (1991)