Some Cohomological Notions in Banach Algebras Based on Maximal Ideal Space

Amir Sahami1, Mohammad Rostami2
1Department of Mathematics, Faculty of Basic Sciences, Ilam University, Ilam, Iran
2Faculty of Mathematical and Computer Science, Amirkabir University of Technology, Tehran, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alaghmandan M, Nasr Isfahani R, Nemati M (2010) Character amenability and contractibility of abstract Segal algebras. Bull Aust Math Soc 82:274–281

Dales HG, Lau AT, Strauss D (2010) Banach algebras on semigroups and their compactifications. Mem Am Math Soc 205:1–165

Essmaili M, Rostami M, Amini M (2016) A characterization of biflatness of Segal algebras based on a character. Glas Math Ser III 51(71):45–58

Eymard P (1964) L’algèbre de Fourier d’un groupe localement compacte. Bull Soc Math France 92:181–236

Helemskii AY (1972) On a method for calculating and estimating the global homological dimentional of Banach algebras. Mat Sb 87(129):122–135

Helemskii AY (1989) The homology of Banach and topological algebras, translated from the Russian by Alan West. Mathematics and Its Applications (Soviet Series), 41. Kluwer Academic Publishers Group, Dordrecht, MR1093462 (92d:46178)

Hewitt E, Ross KA (1963) Abstract harmonic analysis I. Springer-Verlag, Heidelberg

Hu Z, Monfared MS, Traynor T (2009) On character amenable Banach algebras. Studia Math 193:53–78

Javanshiri H, Nemati M (2018) Invariant $$\phi $$-means for abstract Segal algebras related to locally compact groups. Bull Belg Math Soc Simon Stevin 25:687–698

Kaniuth E (2009) A course in commutative Banach algebras. Springer, New York

Kaniuth E, Lau AT, Pym J (2008) On $$\phi $$-amenability of Banach algebras. Math Proc Camb Philos Soc 44:85–96

Lau AT, Pym J (1990) Concerning the second dual of the group algebra of a locally compact group. J Lond Math Soc 41:445–460

Nasr Isfahani R, Soltani Renani S (2011) Character contractibility of Banach algebras and homological properties of Banach modules. Studia Math 202(3):205–225

Rahimi H, Ghahramani M, Moayeri S (2010) Biprojectivity and weak amenability of some Banach algebras. Contemp Math Funct Spaces Mod Anal 547:207–216

Reiter H (1971) $$L^{1}$$-algebras and Segal algebras. Lecture notes in mathematics 231. Springer

Runde V (2020) Amenable Banach algebras: a panorama, Springer monographs in mathematics. Springer-Verlag

Sahami A (2019) On left $$\phi $$-biprojectivity and left $$\phi $$-biflatness of certain Banach algebras. Politehn Univ Bucharest Sci Bull Ser A Appl Math Phys 81(4):97–106

Sahami A, Pourabbas A (2016) Approximate biprojectivity and $$\phi $$-biflatness of some Banach algebras. Colloq Math 245:273–284

Sahami A, Pourabbas A (2013) On $$\phi $$-biflat and $$\phi $$-biprojective Banach algebras. Bull Belg Math Soc Simon Stevin 20:789–801

Samei E, Spronk N, Stokke R (2010) Biflatness and pseudo-amenability of Segal algebras. Canad J Math 62:845–869

Zhang Y (1991) Nilpotent ideals in a class of Banach algebras. Proc Am Math Soc 127(11):3237–3242