Some Aging Properties Involved with Compound Geometric Distributions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abouammoh A.M., Ahmad R. and Khalique A. (2000). On new renewal better than used classes of life distributions. Stat. Probab. Lett. 48, 189–194.
Bhattacharjee M.C., Ravi S., Vasudeva R. and Mohan N.R. (2003). New order preserving properties of geometric compounds. Stat. Probab. Lett. 64, 113–120.
Dufresne F. and Gerber H.U. (1991). Risk theory for the compound Poisson process that is perturbed by diffusion. Insur. Math. Econ. 10, 51–59.
Kaas R., Goovaerts M., Dhaene J. and Denuit M. (2008). Modern Actuarial Risk Theory. Springer, Heidelberg.
Kalashnikov V. (1997). Geometric Sums: Bounds for Rare Events with Applications. Kluwer Academic Publishers, Dordrecht.
Lin X.S. and Willmot G.E. (1999). Analysis of a defective renewal equation arising in ruin theory. Insur. Math. Econ. 25, 63–84.
Marshall A.W. and Olkin I. (2007). Life Distributions. Springer, New York.
Psarrakos G. (2009). A note on convolutions of compound geometric distributions. Stat. Probab. Lett. 79, 1231–1237.
Psarrakos G. (2010). On the DFR property of the compound geometric distribution with applications in risk theory. Insur. Math. Econ. 47, 428–433.
Ross S.M. (1996). Stochastic Processes. Wiley, New York.
Van Hoorn M. (1984). Algorithms and Approximations for Queueing Systems. CWI Tract 8, Amsterdam.
Willmot G.E. (2002). Compound geometric residual lifetime distributions and the deficit at ruin. Insur. Math. Econ. 30, 421–438.
Willmot G.E. and Cai J. (2004). On applications of residual lifetimes of compound geometric convolutions. J. Appl. Probab. 41, 802–815.