Somatic embryogenesis is an effective strategy for dissecting chimerism phenomena in Vitis vinifera cv Nebbiolo

Plant Cell Reports - Tập 40 - Trang 205-211 - 2020
Giorgio Gambino1, Amedeo Moine1, Paolo Boccacci1, Irene Perrone1, Chiara Pagliarani1
1Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy

Tóm tắt

The tendency of somatic embryogenesis to regenerate plants only from the L1 layer, associated with the spread of chimerism in grapevine, must be carefully considered in the framework of biotechnological improvement programmes. Grapevine is an important fruit crop with a high economic value linked to traditional genotypes that have been multiplied for centuries by vegetative propagation. In this way, somatic variations that can spontaneously occur within the shoot apical meristem are fixed in the whole plant and represent a source of intra-varietal variability. Previously identified inconsistencies in the allelic calls of single nucleotide variants (SNVs) suggested that the Vitis vinifera ‘Nebbiolo’ CVT185 clone is a potential periclinal chimera. We adopted the somatic embryogenesis technique to separate the two genotypes putatively associated with the L1 and L2 layers of CVT185 into different somaclones. Despite the recalcitrance of ‘Nebbiolo’ to the embryogenic process, 58 somaclones were regenerated and SNV genotyping assays attested that the genotype of all them differed from that of the mother plant and was only attributable to L1. The results confirmed that L2 has low or no competence for differentiating somatic embryos. After one year in the greenhouse, the somaclones showed no phenotypic alterations in comparison with the mother plant; however further analyses are needed to identify potential endogenous sources of variation. The tendency of somatic embryogenesis to regenerate plants only from L1 must be carefully considered in the framework of biotechnological improvement programmes in this species.

Tài liệu tham khảo

Bertsch C, Kieffer F, Maillot P, Farine S, Butterlin G, Merdinoglu D, Walter B (2005) Genetic chimerism of Vitis vinifera cv. Chardonnay 96 is maintained through organogenesis but not somatic embryogenesis. BMC Plant Biol 5:20. https://doi.org/10.1186/1471-2229-5-20 Boss PK, Thomas MR (2002) Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature 416:847–850. https://doi.org/10.1038/416847a Canaguier A, Grimplet J, Di Gaspero G, Scalabrin S, Duchêne E, Choisne N, Mohellibi N, Guichard C, Rombauts S, Le Clainche I, Bérard A, Chauveau A, Bounon R, Rustenholz C, Morgante M, Le Paslier M-C, Brunel D, Adam-Blondon A-F (2017) A new version of the grapevine reference genome assembly (12X.v2) and of its annotation (VCost.v3). Genom Data 14:56–62. https://doi.org/10.1016/j.gdata.2017.09.002 Cardoso HG, Campos MC, Pais MS, Peixe A (2010) Use of morphometric parameters for tracking ovule and microspore evolution in grapevine (Vitis vinifera L., cv. “Aragonez”) and evaluation of their potential to improve in vitro somatic embryogenesis efficiency from gametophyte tissues. Vitro Cell Dev Biol-Plant 46:499–508. https://doi.org/10.1007/s11627-010-9295-6 Carra A, Sajeva M, Abbate L, Siragusa M, Pathirana R, Carimi F (2016) Factors affecting somatic embryogenesis in eight Italian grapevine cultivars and the genetic stability of embryo-derived regenerants as assessed by molecular markers. Sci Hortic 204:123–127. https://doi.org/10.1016/j.scienta.2016.03.045 Crespan M (2004) Evidence on the evolution of polymorphism of microsatellite markers in varieties of Vitis vinifera L. Theor Appl Genet 108:231–237. https://doi.org/10.1007/s00122-003-1419-5 Dermen H (1960) Nature of plant sports. Am Hort Mag 39:123–173 Franks T, Botta R, Thomas MR (2002) Chimerism in grapevines: implications for cultivar identity, ancestry and genetic improvement. Theor Appl Genet 104:192–199. https://doi.org/10.1007/s001220100683 Franks T, He DG, Thomas M (1998) Regeneration of transgenic Vitis vinifera L. Sultana plants: a genotypic and phenotypic analysis. Mol Breed 4:321–333. https://doi.org/10.1023/A:1009673619456 Gambino G, Dal Molin A, Boccacci P, Minio A, Chitarra W, Avanzato CG, Tononi P, Perrone I, Raimondi S, Schneider A, Pezzotti M, Mannini F, Gribaudo I, Delledonne M (2017) Whole-genome sequencing and SNV genotyping of ‘Nebbiolo’ (Vitis vinifera L.) clones. Sci Rep 7:17294. https://doi.org/10.1038/s41598-017-17405-y Gambino G, Gribaudo I, Leopold S, Schartl A, Laimer M (2005) Molecular characterization of grapevine plants transformed with GFLV resistance genes: I. Plant Cell Rep 24:655–662. https://doi.org/10.1007/s00299-005-0006-4 Gambino G, Minuto M, Boccacci P, Perrone I, Vallania R, Gribaudo I (2011) Characterization of expression dynamics of WOX homeodomain transcription factors during somatic embryogenesis in Vitis vinifera. J Exp Bot 62:1089–1101. https://doi.org/10.1093/jxb/erq349 Gambino G, Ruffa P, Vallania R, Gribaudo I (2007) Somatic embryogenesis from whole flowers, anthers and ovaries of grapevine (Vitis spp.). Plant Cell Tiss Organ Cult 90:79–83. https://doi.org/10.1007/s11240-007-9256-x Gribaudo I, Gambino G, Boccacci P, Perrone I, Cuozzo D (2017) A multi-year study on the regenerative potential of several Vitis genotypes. Acta Hort 1155:45–50. https://doi.org/10.17660/ActaHortic.2017.1155.5 Hocquigny S, Pelsy F, Dumas V, Kindt S, Heloir MC, Merdinoglu D (2004) Diversification within grapevine cultivars goes through chimeric states. Genome 47:579–589. https://doi.org/10.1139/g04-006 López-Pérez AJ, Carreño J, Martinez-Cutillas A, Dabauza M (2005) High embryogenic ability and plant regeneration of table grapevine cultivars (Vitis vinifera L.) induced by activated charcoal. Vitis 44:79–85 Maillot P, Deglène-Benbrahim L, Walter B (2016) Efficient somatic embryogenesis from meristematic explants in grapevine (Vitis vinifera L.) cv. Chardonnay: an improved protocol. Trees 30:1377–1387. https://doi.org/10.1007/s00468-016-1374-9 Malnoy M, Viola R, Jung MH, Koo OJ, Kim S, Kim JS, Velasco R, Nagamangala Kanchiswamy C (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904. https://doi.org/10.3389/fpls.2016.01904 Martinelli L, Gribaudo I, Bertoldi D, Candioli E, Poletti V (2001) High efficiency somatic embryogenesis and plant germination in grapevine cultivars Chardonnay and Brachetto a grappolo lungo. Vitis 40:111–115 Martinelli L, Gribaudo I (2009) Strategies for effective somatic embryogenesis in grapevine (Vitis spp). An appraisal. In: Roubelakis-Angelakis KA (ed) Grapevine molecular physiology and biotechnology. Springer Science + Business Media, NL, pp 461–493 Moncada X, Pelsy F, Merdinoglu D, Hinrichsen P (2007) Genetic diversity and geographical dispersal in grapevine clones revealed by microsatellite markers. Genome 49:1459–1472. https://doi.org/10.1139/g06-102 Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87. https://doi.org/10.1126/science.163.3862.85 Osakabe Y, Liang Z, Ren C, Nishitani C, Osakabe K, Wada M, Komori S, Malnoy M, Velasco R, Poli M, Jung M-H, Koo O-J, Viola R, Nagamangala Kanchiswamy C (2018) CRISPR-Cas9-mediated genome editing in apple and grapevine. Nat Protoc 13:2844–2863. https://doi.org/10.1038/s41596-018-0067-9 Pelsy F (2010) Molecular and cellular mechanisms of diversity within grapevine varieties. Heredity 104:331–340. https://doi.org/10.1038/hdy.2009.161 Pelsy F, Dumas V, Bévilacqua L, Hockquigny S, Merdinglu D (2015) Chromosome replacement and deletion lead to clonal polymorphism of berry color in grapevine. PLOS Genet 11:e1005081. https://doi.org/10.1371/journal.pgen.1005081 Ren C, Liu X, Zhang Z, Wang Y, Duan W, Li S, Liang Z (2016) CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci Rep 6:32289. https://doi.org/10.1038/srep32289 Robinson J, Harding J, Vouillamoz J (2012) Wine grapes. A complete guide to 1,368 vine varieties, including their origins and flavours. Penguin books, London Thompson MM, Olmo HP (1963) Cytohistological studies of cytochimeric and tetraploid grapes. Am J Bot 50:901–906. https://doi.org/10.2307/2439777 Torregrosa L, Fernandez L, Bouquet A, Boursiquot J-M, Pelsy F, Martinez-Zapater J-M (2011) Origins and consequences of somatic variation in grapevine. In: Adam-Blondon AF, Martínez-Zapater JM, Kole C (eds) Genetics, genomics and breeding of grapes. Science Publishers, New Hampshire, pp 68–92 Vezzulli S, Leonardelli L, Malossini U, Stefanini M, Velasco R, Moser C (2012) Pinot blanc and Pinot gris arose as independent somatic mutations of Pinot noir. J Exp Bot 63:6359–6369. https://doi.org/10.1093/jxb/ers290 Viala P, Vermorel V (1910) Ampélographie. Tome I, Masson, Paris Walker AR, Lee E, Robinson SP (2006) Two new grape cultivars, bud sports of Cabernet Sauvignon bearing pale-coloured berries, are the result of deletion of two regulatory genes of the berry color locus. Plant Mol Biol 62:623–635. https://doi.org/10.1007/s11103-006-9043-9 Zhao T, Wang Z, Su L, Sun X, Cheng J, Zhang L, Karungo KS, Han Y, Li S, Xin H (2017) An efficient method for transgenic callus induction from Vitis amurensis petiole. PLoS ONE 12:e0179730. https://doi.org/10.1371/journal.pone.0179730