Solving the quasi-variational Signorini inequality by the method of successive approximations
Tóm tắt
Từ khóa
Tài liệu tham khảo
I. Hlavacek, J. Haslinger, J. Necas, and J. Lovisek, Solution of Variational Inequalities in Mechanics (Mir, Moscow, 1986; Springer-Verlag, Berlin, 1988).
N. Kikuchi and T. Oden, Contact Problem in Elasticity: A Study of Variational Inequalities and Finite Element Methods (SIAM, Philadelphia, 1988).
E. M. Vikhtenko and R. V. Namm, “Duality Scheme for Solving the Semicoercive Signorini Problem with Friction,” Zh. Vychisl. Mat. Mat. Fiz. 47, 2023–2036 (2007) [Comput. Math. Math. Phys. 47, 1938–1951 (2007)].
E. M. Vikhtenko and R. V. Namm, “Iterative Proximal Regularization of the Modified Lagrangian Functional for Solving the Quasi-Variational Signorini Inequality,” Zh. Vychisl. Mat. Mat. Fiz. 48, 1571–1579 (2008) [Comput. Math. Math. Phys. 48, 1536–1544 (2008)].
A. S. Kravchuk, Variational and Quasi-Variational Inequalities in Mechanics (MGAPI, Moscow, 1997) [in Russian].
A. S. Antipin, Gradient and Extragradient Approaches in Bilinear Equilibrium Programming (Vychisl. Tsentr Ross. Akad. Nauk, Moscow, 2002) [in Russian].
R. Glowinski, J.-L. Lions, and R. Tremolieres, Numerical Analysis of Variational Inequalities (North-Holland, Amsterdam, 1981; Mir, Moscow, 1979).
R. Glowinski, Numerical Methods for Nonlinear Variational Problems (Springer-Verlag, New York, 1984).
G. Fichera, Existence Theorems in Elasticity (Springer-Verlag, Berlin, 1972; Mir, Moscow, 1974).
G. Woo, R. V. Namm, and S. A. Sachkoff, “An Iterative Method Based on a Modified Lagrangian Functional for Finding a Saddle Point in the Semicoercive Signorini Problem,” Zh. Vychisl. Mat. Mat. Fiz. 46, 26–36 (2006) [Comput. Math. Math. Phys. 46, 23–33 (2006)].
G. Woo, S. Kim, R. V. Namm, and S. A. Sachkoff, “Iterative Proximal Regularization Method for Finding a Saddle Point in the Semicoercive Signorini Problem,” Zh. Vychisl. Mat. Mat. Fiz. 46, 2024–2031 (2006) [Comput. Math. Math. Phys. 46 (11), 1932–1939 (2006)].
V. V. Vasin and I. I. Eremin, Operators and Iterative Processes of Fejér Type: Theory and Applications (Moscow, Inst. Komput. Issled., 2005) [in Russian].
A. S. Antipin, “Convex Programming Method Using a Symmetric Modification of the Lagrangian Functional,” Ekon. Mat. Metody 12, 1164–1173 (1976).
R. T. Rockafellar, “Augmented Lagrangians and Application of the Proximal Point Algorithm in Convex Programming,” Math. Operat. Res. 1(2), 97–116 (1976).
G. I. Marchuk and V. I. Agoshkov, Introduction to Projective-Grid Methods (Fizmatlit, Moscow, 1981) [in Russian].
G. Strang and G. Fix, An Analysis of the Finite Element Method (Prentice Hall, Englewood Cliffs, New York, 1973).
O.C. Zienkiewicz and K. Morgan, Finite Elements and Approximation (Mir, Moscow, 1986; Dover, New York, 2006).
I. Ekeland and R. Temam, Convex Analysis and Variational Problems (North-Holland, Amsterdam, 1976; Mir, Moscow, 1979).