Solving the inverse Knudsen problem: Gas diffusion in random fibrous media
Tài liệu tham khảo
Chan, 2012, Experimental measurement of effective diffusion coefficient of gas diffusion layer/microporous layer in PEM fuel cells, Electrochim. Acta, 65, 13, 10.1016/j.electacta.2011.12.110
Cash, 2019
Lee, 2014
Gilron, 2002, Knudsen diffusion in microporous carbon membranes with molecular sieving character, J. Membr. Sci., 209, 339, 10.1016/S0376-7388(02)00074-1
Phattaranawik, 2003, Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation, J. Membr. Sci., 215, 75, 10.1016/S0376-7388(02)00603-8
Li, 2016, Influence of microporous membrane properties on the desalination performance in direct contact membrane distillation, J. Membr. Sci., 513, 280, 10.1016/j.memsci.2016.04.015
Kim, 2017, Self-adjusting, combined diffusion in direct contact and vacuum membrane distillation, J. Membr. Sci., 543, 255, 10.1016/j.memsci.2017.08.059
2006
Elam, 2012, Coatings on high aspect ratio structures, 227
Yazdani, 2014, Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes, Beilstein J. Nanotechnol., 5, 234, 10.3762/bjnano.5.25
Guerra-Nuñez, 2015, Morphology and crystallinity control of ultrathin TiO 2 layers deposited on carbon nanotubes by temperature-step atomic layer deposition, Nanoscale, 7, 10622, 10.1039/C5NR02106E
Guerra-Nuñez, 2017, Reaction and growth mechanisms in Al 2 O 3 deposited via atomic layer deposition: elucidating the hydrogen source, Chem. Mater., 29, 8690, 10.1021/acs.chemmater.7b02759
Elam, 2003, Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition, Chem. Mater., 15, 3507, 10.1021/cm0303080
Gordon, 2003, A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches, Chem. Vap. Depos., 9, 73, 10.1002/cvde.200390005
Dendooven, 2017, Basics of atomic layer deposition: growth characteristics and conformality, 1
Baxamusa, 2008, Thin polymer films with high step coverage in microtrenches by initiated CVD, Chem. Vap. Depos., 14, 313, 10.1002/cvde.200806713
Li, 2000, Densification of unidirectional carbon–carbon composites by isothermal chemical vapor infiltration, Carbon, 38, 423, 10.1016/S0008-6223(99)00122-0
Sun, 2015, Gas transport mode criteria in ultra-tight porous media, Int. J. Heat Mass Tran., 83, 192, 10.1016/j.ijheatmasstransfer.2014.11.075
Knudsen, 1909, Die Gesetze der Molekularströmung und der inneren Reibungsströmung der Gase durch Röhren, Ann. Phys., 333, 75, 10.1002/andp.19093330106
Knudsen, 1909, Die Molekularströmung der Gase durch Offnungen und die Effusion, Ann. Phys., 333, 999, 10.1002/andp.19093330505
Knudsen, 1916, Das Cosinusgesetz in der kinetischen Gastheorie, Ann. Phys., 353, 1113, 10.1002/andp.19163532409
Malek, 2003, Knudsen self- and Fickian diffusion in rough nanoporous media, J. Chem. Phys., 119, 2801, 10.1063/1.1584652
Dreyer, 2014, Simulation of gas diffusion in highly porous nanostructures by direct simulation Monte Carlo, Chem. Eng. Sci., 105, 69, 10.1016/j.ces.2013.10.038
Shi, 2012, Knudsen diffusion through cylindrical tubes of varying radii: theory and Monte Carlo simulations, Transport Porous Media, 93, 517, 10.1007/s11242-012-9966-3
Vignoles, 2011, A Brownian motion algorithm for tow scale modeling of chemical vapor infiltration, Comput. Mater. Sci., 50, 1871, 10.1016/j.commatsci.2011.01.031
Feres, 2004, Knudsen's cosine law and random billiards, Chem. Eng. Sci., 59, 1541, 10.1016/j.ces.2004.01.016
Welty, 2015
Ylilammi, 2018, Modeling growth kinetics of thin films made by atomic layer deposition in lateral high-aspect-ratio structures, J. Appl. Phys., 123, 205301, 10.1063/1.5028178
Zheng, 2012, A diffusivity model for gas diffusion through fractal porous media, Chem. Eng. Sci., 68, 650, 10.1016/j.ces.2011.10.031
Levitz, 1993, Knudsen diffusion and excitation transfer in random porous media, J. Phys. Chem., 97, 3813, 10.1021/j100117a030
Szmyt, 2017, Diffusion of dilute gas in arrays of randomly distributed, vertically aligned, high-aspect-ratio cylinders, Beilstein J. Nanotechnol., 8, 64, 10.3762/bjnano.8.7
Shou, 2014, An analytical model for gas diffusion though nanoscale and microscale fibrous media, Microfluid. Nanofluidics, 16, 381, 10.1007/s10404-013-1215-8
Zhu, 2006, Monitoring carbon nanotube growth by formation of nanotube stacks and investigation of the diffusion-controlled kinetics, J. Phys. Chem. B, 110, 5445, 10.1021/jp060027q
Tomadakis, 1993, Ordinary and transition regime diffusion in random fiber structures, AIChE J., 39, 397, 10.1002/aic.690390304
Melkote, 1989, Gas diffusion in random-fiber substrates, AIChE J., 35, 1942, 10.1002/aic.690351205
Tomadakis, 1991, Effective Kundsen diffusivities in structures of randomly overlapping fibers, AIChE J., 37, 74, 10.1002/aic.690370107
Poodt, 2017, Effect of reactor pressure on the conformal coating inside porous substrates by atomic layer deposition, J. Vac. Sci. Technol. Vac. Surf. Films., 35, 10.1116/1.4973350
O'Hanlon, 2005
Cieplak, 2000, Molecular dynamics of flows in the Knudsen regime, Phys. Stat. Mech. Its Appl., 287, 153, 10.1016/S0378-4371(00)00353-8
Steckelmacher, 1986, Knudsen flow 75 years on: the current state of the art for flow of rarefied gases in tubes and systems, Rep. Prog. Phys., 49, 1083, 10.1088/0034-4885/49/10/001
Einstein, 1905, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. Phys., 322, 549, 10.1002/andp.19053220806
von Smoluchowski, 1906, Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen, Ann. Phys., 326, 756, 10.1002/andp.19063261405
Colson, 2019, Statistical method for modeling Knudsen diffusion in nanopores, Phys. Rev. E., 100, 10.1103/PhysRevE.100.062125
2009
Hwang, 2012, Effective-diffusivity measurement of partially-saturated fuel-cell gas-diffusion layers, J. Electrochem. Soc., 159, F683, 10.1149/2.024211jes
Burganos, 1998, Gas diffusion in random binary media, J. Chem. Phys., 109, 6772, 10.1063/1.477323
Mu, 2008, Determination of the effective diffusion coefficient in porous media including Knudsen effects, Microfluid, Nanofluidics, 4, 257, 10.1007/s10404-007-0182-3
Zhang, 1994, Evaluation of tortuosity factors and effective diffusivities in biofilms, Water Res., 28, 2279, 10.1016/0043-1354(94)90043-4
Szmyt, 2017, Protective effect of ultrathin alumina film against diffusion of iron into carbon fiber during growth of carbon nanotubes for hierarchical composites investigated by ptychographic X-ray computed tomography, Carbon, 115, 347, 10.1016/j.carbon.2016.12.085
Jin, 2004, Nanofibrillar cellulose aerogels, Colloids Surf. Physicochem. Eng. Asp., 240, 63, 10.1016/j.colsurfa.2004.03.007
He, 2016, Ultra-low thermal conductivity and high strength of aerogels/fibrous ceramic composites, J. Eur. Ceram. Soc., 36, 1487, 10.1016/j.jeurceramsoc.2015.11.021
Clennell, 1997, Tortuosity: a guide through the maze, Geol. Soc. Lond. Spec. Publ., 122, 299, 10.1144/GSL.SP.1997.122.01.18
Puurunen, 2005, Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process, J. Appl. Phys., 97, 121301, 10.1063/1.1940727
Carlsson, 1991, Thermodynamics of the homogeneous and heterogeneous decomposition of trimethylaluminum, monomethylaluminum, and dimethylaluminumhydride: effects of scavengers and ultraviolet-laser photolysis, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct., 9, 2759, 10.1116/1.585642
Nagy, 2019, Membrane gas separation, 457
Breck, 1984