Solving nonlinear and dynamic programming equations on extended b-metric spaces with the fixed-point technique
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abbas, M., Iqbal, H., Petrusel, A.: Fixed points for multivalued Suzuki type $(\theta , \mathcal{R}) $-contraction mapping with applications. J. Funct. Spaces 2019, 9565804, 1–11 (2019). https://doi.org/10.1155/2019/9565804
Andreae, T.: On the traveling salesman problem restricted to inputs satisfying a relaxed triangle inequality. Networks 38(2), 59–67 (2000)
Arandjelović, I., Radenović, Z., Radenović, S.: Boyd-Wong-type common fixed-point results in cone metric spaces. Appl. Math. Comput. (2017), 7167–7171 (2011)
Arutyunov, A., Jaćimović, A.V., Pereira, F.: Second order necessary conditions for optimal impulsive control problems. J. Dyn. Control Syst. 9(1), 131–153 (2003)
Babolian, E., Biazar, J., Vahidi, A.R.: On the decomposition method for system of linear equations and system of linear Volterra integral equations. Appl. Math. Comput. 147(1), 19–27 (2004)
Bakhtin, I.A.: The contraction mapping principle in quasimetric spaces. Funct. Anal. Unianowsk Gos. Ped. Inst. 30, 26–37 (1989)
Belhenniche, A., Benahmed, S., Pereira, F.L.: Extension of λ -PIR for weakly contractive operators via fixed point theory. Fixed Point Theory 22, 511–526 (2021)
Bellman, R.: The theory of dynamic programming. Rand Corporation Report P-550, Santa Monica, CA (1954)
Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific, Belmont (1995)
Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific, Belmont (2005)
Bertsekas, D.P.: Abstract Dynamic Programming. Athena Scientific, Belmont (2013)
Bertsekas, D.P.: Abstract Dynamic Programming. Athena Scientific, Belmont (2018)
Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific, Belmont (1996)
Bhatt, S., Chaukiyal, S., Dimri, R.C.: A common fixed-point theorem for weakly compatible maps in complex valued metric spaces. Int. J. Math. Sci. Appl. 1(3), 1385–1389 (2011)
Biazar, J., Ghazvini, H.: He’s homotopy perturbation method for solving systems of Volterra integral equations of the second kind. Chaos Solitons Fractals 39(2), 770–777 (2009)
Chandok, S., Kumar, D.: Some common fixed-point results for rational type contraction mappings in complex valued metric space. J. Oper. 2013, 813707, 1–7 (2013)
Ćirić, L.B.: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45(2), 267–273 (1974)
Cortelazzo, G., Mian, G.A., Vezzi, G., Zamperoni, P.: Trademark shapes description by string-matching techniques. Pattern Recognit. 27(8), 1005–1018 (1994)
Czerwik, S.: Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1, 5–11 (1993)
Czerwik, S.: Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fis. Univ. Modena 46, 263–276 (1998)
Deeba, E., Khuri, S.A., Xie, S.: An algorithm for solving a nonlinear integro-differential equation. Appl. Math. Comput. 115(2–3), 123–131 (2000)
Dugundji, J., Granas, A.: Fixed Point Theory. Monograe Matematycne, Warsazawa (1982)
Eguia, I., Lozano, S., Racero, J., Guerrero, F.: A methodological approach for designing and sequencing product families in reconfigurable disassembly systems. J. Ind. Eng. Manag. 4(3), 418–435 (2011)
Fagin, R., Stockmeyer, L.: Relaxing the triangle inequality in pattern matching. Int. J. Comput. Vis. 30(3), 219–231 (1998)
Fraga, S., Pereira, F.: Hamilton-Jacobi-Bellman equation and feedback synthesis for impulsive control. IEEE Trans. Autom. Control 57(1), 244–249 (2012)
Guran, L., Petrusel, A.: Existence and data dependence for multivalued weakly Ćirić-contractive operators. Acta Univ. Sapientiae Math. 1(2), 151–159 (2009)
Kamran, T., Samreen, M., Ul Ain, Q.: A generalization of b-metric space and some fixed point theorems. Mathematics 5, 19 (2017)
Karamzin, D., De Oliveira, V., Pereira, F., Silva, G.: On some extension of optimal control theory. Eur. J. Control 20(6), 284–291 (2014)
Katani, R., Shahmorad, S.: Block by block method for the systems of nonlinear Volterra integral equations. Appl. Math. Model. 34(2), 400–406 (2010)
Kilbas, A.H., Srivastava, H.H., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
Kiran, Q., Alamgir, M.N., Aydi, H.: On some fixed-point results in complete extended b-metric space. Mathematics 7(5), 476 (2019)
Lalescu, T.: Introduction À la Théorie des Équations Intégrales. Avec Une Préface de É. Picard, A. Hermann et Fils, Paris (1912)
Maleknejad, K., Mahmoudi, Y.: Numerical solution of linear Fredholm integral equation by using hybrid Taylor and block pulse functions. Appl. Math. Comput. 149(3), 799–806 (2004)
Miculescu, R., Mihail, A.: New fixed-point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 19, 2153–2163 (2017)
Niblack, W., Barber, R., Equitz, W., Flickner, M., Glasman, E., Petkovic, D., Yanker, P.: The QBIC project: querying images by content using color, texture and shape. In: Proc. Conf. on Storage and Retrieval for Image and Video Databases, San Jose, CA, vol. 1908, pp. 173–181 (1993)
Niblack, W., Yin, J.: A pseudo-distance measure for 2D shapes based on turning angle. In: Proc. IEEE Int. Conf. on Image Processing, Washington (1995)
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1991)
Rabbani, M., Maleknejad, K., Aghazadeh, N.: Numerical computational solution of the Volterra integral equations system of the second kind by using an expansion method. Appl. Math. Comput. 187(2), 1143–1146 (2007)
Ren, Y., Zhang, B., Qiao, H.: A simple Taylor-series expansion method for a class of second kind integral equations. J. Comput. Appl. Math. 110(1), 15–24 (1999)
Roshan, J., Parvaneh, V., Sedghi, S., Shobkolaei, N., Shatanawai, W.: Common fixed-points of almost generalized $(\psi , \varphi )_{s}$-contractive mapping in ordered b-metric spaces. Fixed Point Theory Appl. 2013, 159 (2013)
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integral and Derivative. Gordon & Breach, London (1993)
Scassellati, B., Alexopoulos, S., Flickner, M.: Retrieving images by 2D shape: a comparison of computation methods with human perceptual judgments. In: Proc. Conf. on Storage and Retrieval for Image and Video Databases II. San Jose, CA, SPIE, vol. 2185, pp. 2–14 (1994). Taubin, G. and Cooper, D.B. 1991
Tahmasbi, A., Fard, O.S.: Numerical solution of linear Volterra integral equations system of the second kind. Appl. Math. Comput. 201(1–2) 547–552 (2008)
Tarafdar, E.: An approach to fixed-point theorems on uniform spaces. Trans. Am. Math. Soc. 191, 209–225 (1974)
Veltkamp, R.C.: Shape matching: similarity measures and algorithms. In: International Conference on Shape Modeling and Applications, SMI 2001, vol. 188. IEEE (2001)
Yalcinbas, S.: Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations. Appl. Math. Comput. 127(2–3), 195–206 (2002)
Yalcınbas, S., Sezer, M.: The approximate solution of high order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials. Appl. Math. Comput. 112(2–3), 291–308 (2000)