Solving an integral equation via generalized controlled fuzzy metrics

Gunaseelan Mani1, Arul Joseph Gnanaprakasam2, Abdollah Dinmohammadi3, Vahid Parvaneh4, Babak Mohammadi5
1Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
2Department of Mathematics, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Chennai, India
3Department of Mathematics, Buein Zahra Technical University, Buein Zahra, Iran
4Department of Mathematics, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb, Iran
5Department of Mathematics, Marand Branch, Islamic Azad University, Marand, Iran

Tóm tắt

The purpose of this manuscript is to obtain some fixed point results in generalized controlled fuzzy metric spaces. Our results generalize and extend many of the previous findings in the same approach. Moreover, two examples to support our theorems are obtained. Finally, to examine and strengthen the theoretical results, the existence and uniqueness of the solution to a nonlinear integral equation is studied as a kind of application.

Tài liệu tham khảo

Frechet, M.: Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo 22(1), 1–74 (1906) Banach, S.: Sur les operations dans les ensembles abstraits et leur application aux equations intégrales. Fundam. Math. 3(1), 133–181 (1922) Jleli, M., Samet, B.: A generalized metric space and related fixed point theorems. Fixed Point Theory Appl. 2015(1), 61 (2015) Kramosil, I., Michalek, J.: Fuzzy metric and statistical metric spaces. Kybernetika 11, 336–344 (1975) Shen, Y., Qiu, D., Chen, W.: Fixed point theorems in fuzzy metric spaces. Appl. Math. Lett. 25(2), 138–141 (2012) Beg, I., Sedghi, S., Shobe, N.: Fixed point theorems in fuzzy metric spaces. Int. J. Anal. 2013, 1–8 (2013) Gupta, V., Kanwar, A.: V-fuzzy metric space and related fixed point theorems. Fixed Point Theory Algorithms Sci. Eng. 2016, 51 (2016) Rakić, D., Došenović, T., Mitrović, Z.D., de la Sen, M., Radenović, S.: Some fixed point theorems of Ćirić type in fuzzy metric spaces. Mathematics 8(2), 297 (2020) Sezen, M.S.: Controlled fuzzy metric spaces and some related fixed point results. Numer. Methods Partial Differ. Equ. 37(1), 583–593 (2021). https://doi.org/10.1002/num.22541 Gunaseelan, M., Gnanaprakasam, A.J., Mitrović, Z.D., Bota, M.-F.: Solving an integral equation via fuzzy triple controlled bipolar metric spaces. Mathematics 9, 3181 (2021) Ashraf, M.S., Ali, R., Hussain, N.: New fuzzy fixed point results in generalized fuzzy metric spaces with application to integral equations. IEEE Access 8, 91653–91660 (2020). https://doi.org/10.1109/ACCESS.2020.2994130 Elkouch, Y., Marhrani, E.L.: On some fixed point theorems in generalized metric space. Fixed Point Theory Appl. 2017(1), 23 (2017) Karami, A., Sedghi, S., Parvaneh, V.: Sequential extended S-metric spaces and relevant fixed point results with application to nonlinear integral equations. Adv. Math. Phys. 2021, Article ID 9910861 (2021) Roy, K., Panja, S., Saha, M., Parvaneh, V.: An extended b-metric-type space and related fixed point theorems with an application to nonlinear integral equations. Adv. Math. Phys. 2020, Article ID 8868043 (2020). https://doi.org/10.1155/2020/8868043 Schweizer, B., Sklar, A.: Statistical metric spaces. Pac. J. Math. 10, 313–334 (1960) George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Sets Syst. 64(3), 395–399 (1994) Kramosil, I., Michalek, J.: Fuzzy metrics and statistical metric spaces. Kybernetika 11(5), 326–334 (1975) Sadeghi, Z., Vaezpour, S., Park, C., Saadati, R., Vetro, C.: Set-valued mappings in partially ordered fuzzy metric spaces. J. Inequal. Appl. 2014(1), 157 (2014) Turkoglu, D., Sangurlu, M.: Fixed point theorems for fuzzy contractive mappings in fuzzy metric spaces. J. Intell. Fuzzy Syst. 26(1), 137–142 (2014) Gopal, D., Vetro, C.: Some new fixed point theorems in fuzzy metric spaces. Iran. J. Fuzzy Syst. 11(3), 95–107 (2014) Vetro, C.: Fixed points in weak non-Archimedean fuzzy metric spaces. Fuzzy Sets Syst. 162(1), 84–90 (2011) Phiangsungnoen, S.: Some new fuzzy fixed point theorems for fuzzy contractive mappings in Hausdorff fuzzy metric spaces. In: Proc. Int. Conf. Control, Artif. Intell., Robot. Optim. (ICCAIRO), pp. 159–164 (2018) Mohammadi, B., Hussain, A., Parvaneh, V., Saleem, N., Shahkoohi, R.J.: Fixed point results for generalized fuzzy contractive mappings in fuzzy metric spaces with application in integral equations. J. Math. 2021, Article ID 9931066 (2021). https://doi.org/10.1155/2021/9931066 Rezaee, M.M., Sedghi, S., Parvaneh, V.: JS-Prešić contractive mappings in extended modular S-metric spaces and extended fuzzy S-metric spaces with an application. Azerb. J. Math. 12(1), 162–182 (2022) Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 27(3), 385–389 (1988) Khalehoghli, S., Rahimi, H., Eshaghi Gordji, M.: Fixed point theorems in R-metric spaces with applications. AIMS Math. 5, 3125–3137 (2020) Khalehoghli, S., Rahimi, H., Eshaghi Gordji, M.: R-topological spaces and SR-topological spaces with their applications. Math. Sci. 14, 249–255 (2020)