Solving an electrostatics-like problem with a current dipole source by means of the duality method

Applied Mathematics Letters - Tập 25 - Trang 1410-1414 - 2012
Alberto Valli1
1Department of Mathematics, University of Trento, via Sommarive, 14, 38123, Povo, Trento, Italy

Tài liệu tham khảo

Sarvas, 1987, Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem, Phys. Med. Biol., 32, 11, 10.1088/0031-9155/32/1/004 He, 1998, Identification of dipole sources in a bounded domain for Maxwell’s equations, Wave Motion, 28, 25, 10.1016/S0165-2125(97)00063-2 Ammari, 2002, An inverse source problem for Maxwell’s equations in magnetoencephalography, SIAM J. Appl. Math., 62, 1369, 10.1137/S0036139900373927 Albanese, 2006, The inverse source problem for Maxwell’s equations, Inverse Problems, 22, 1023, 10.1088/0266-5611/22/3/018 Wolters, 2007, Numerical mathematics of the subtraction method for the modeling of a current dipole in EEG source reconstruction using finite element head models, SIAM J. Sci. Comput., 30, 24, 10.1137/060659053 Lew, 2009, Accuracy and run-time comparison for differential potential approaches and iterative solvers in finite element method based EEG source analysis, Appl. Numer. Math., 59, 1970, 10.1016/j.apnum.2009.02.006 Marin, 1998, Influence of skull anisotropy for the forward and inverse problem in EEG: simulation studies using the FEM on realistic head models, Human Brain Mapping, 6, 250, 10.1002/(SICI)1097-0193(1998)6:4<250::AID-HBM5>3.0.CO;2-2 Awada, 1997, Computational aspects of finite element modeling in EEG source localization, IEEE Trans. Biomed. Eng., 44, 736, 10.1109/10.605431 Višik, 1956, General formulation of certain boundary problems for elliptic partial differential equations (Russian), Dokl. Akad. Nauk SSSR (NS), 111, 521 Lions, 1957, Conditions aux limites de Visik–Soboleff et problèmes mixtes, C. R. Acad. Sci. Paris, 244, 1126 Stampacchia, 1965, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15, 189, 10.5802/aif.204 Evans, 1998 Gilbarg, 1983