Solving Yosida inclusion problem in Hadamard manifold

Arabian Journal of Mathematics - Tập 9 - Trang 357-366 - 2019
Mohammad Dilshad1
1Faculty of Science, Department of Mathematics, University of Tabuk, Tabuk, Kingdom of Saudi Arabia

Tóm tắt

We consider a Yosida inclusion problem in the setting of Hadamard manifolds. We study Korpelevich-type algorithm for computing the approximate solution of Yosida inclusion problem. The resolvent and Yosida approximation operator of a monotone vector field and their properties are used to prove that the sequence generated by the proposed algorithm converges to the solution of Yosida inclusion problem. An application to our problem and algorithm is presented to solve variational inequalities in Hadamard manifolds.

Tài liệu tham khảo

Ahmad, R.; Ishtiyak, M.; Rahman, M.; Ahmad, I.: Graph convergence and generalized Yosida approximation operator with an application. Math Sci. 11, 155–163 (2017) Ahmad, R.; Dilshad, M.; Wong, M.-M.; Yao, J.-C.: \(H(\cdot , \cdot )\)-Cocoercive operator and an application for solving generalized variational inclusions. Abstr. Appl. Anal. 2011 (2011). https://doi.org/10.1155/2011/261534 Ansari, Q.H.; Babu, F.; Li, X.-B.: Variational inclusion problems on Hadamard manifolds. J. Non. Conv. Anal. 19(2), 219–237 (2018) Brézis, H.; Lion, P.L.: Produits infinis de resolvents. Israel J. Math. 29, 329–345 (1970) Bruck, R.E.: A strong convergence iterative solution of \(0\in U(x)\) for a maximal monotone operator in Hilbert space. J. Math. Anal. Appl. 48, 114–126 (1974) Chang, S.S.: Set-valued varational inclusion in Banach spaces. J. Math. Anal. Appl. 248(2), 438–454 (2000) Cho, S.Y.: Strong convergence of an iterative algorithm for sums of two monotone operators. J. Fixed Point Theory 2 (2013) Fang, C.J.; Chen, S.L.: A projection algorithm for set-valued variational inequalities on Hadamard manifolds. Optim. Lett. 9(4), 779–794 (2015) Ferreira, O.P.; Pérez, L.R.L.; Németh, S.Z.: Singalarities of monotone vector fields and an extragradient-type algorithm. J. Global. Optim. 31(1), 133–151 (2005) Ferreira, O.P.; Oliviera, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51(2), 257–270 (2002) Kamimura, S.; Takahashi, W.: Approximating solutions of maximal monotone operators in Hilbert spaces. J. Approx. Theory 106(2), 226–2240 (2000) Li, S.L.; Li, C.; Liou, Y.C.; Yao, J.C.: Existence of solutions for variational inequalities in Riemannian manifolds. Nonlinear Anal. 71(11), 5695–5706 (2009) Li, C.; Lopez, G.; Márquez, V.M.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79(3), 663–683 (2009) Li, C.; López, G.; Márquez, V.M.; Wang, J.H.: Resolvent of set-valued monotone vector fields in Hadamard manifolds. J. Set-valued Anal. 19(3), 361–383 (2011) Manaka, H.; Takahashi, W.: Weak convergence theorems for maximal monotone operators with nonspreading mappings in Hilbert spaces. Cubo A Math. J. 13(1), 11–24 (2011) Németh, S.Z.: Variational inequalities on Hadamard manifolds. Nonlinear Anal. 52, 1491–1498 (2003) Noor, M.A.; Noor, K.I.: Two-stepts methods for variational inequalities on Hadamard manifolds. Appl. Math. Inf. Sci. 9(4), 1863–1867 (2015) Penot, J.P.; Ratsimahalo, R.: On the Yosida approximation of operators. Proc. R. Soc. Edinb. Math. 131A, 945–966 (2001) Rokafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976) Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75(1), 287–292 (1980) Sahu, D.R.; Ansari, Q.H.; Yao, J.C.: The prox-Tikhonov-like forward-backward method and applications. Taiwan. J. Math. 19(2), 481–503 (2015) Sakai, T.: Riemannian Geomety, Translations of Mathematical Monographs. American Mathematical Society, Providence (1996) Takahashi, S.; Takahashi, W.; Toyoda, M.: Strong convergnec theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces. J. Optim. Theory Appl. 147(1), 27–41 (2010) Tang, G.J.; Huang, N.J.: Korpelevich method for variational inequality problems on Hadamard manifolds. J. Global Optim. 54(3), 493–509 (2012) Walter, R.: On the metric projection onto convex sets in Riemannian spaces. Arch. Math. XXV, 91–98 (1974)