Solving 0–1 knapsack problems by chaotic monarch butterfly optimization algorithm with Gaussian mutation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver Press, Frome
Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Proceeding of world congress on nature and biologically inspired computing (NaBIC 2009), IEEE Publications, pp 210–214
Karthikeyan S, Asokan P, Nickolas S, Page T (2015) A hybrid discrete firefly algorithm for solving multi-objective flexible job shop scheduling problems. Int J Bio-Inspir Comput 7(6):386–401
Wang GG, Deb S, Coelho LDS (2015) Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int J Bio-Inspir Comput (accepted)
Wang GG, Deb S, Gao XZ, Coelho LDS (2016) A new metaheuristic optimization algorithm motivated by elephant herding behavior. Int J Bio-Inspir Comput (accepted)
Wang GG, Deb S, Coelho LDS (2015) Elephant herding optimization. In: 2015 3rd International symposium on computational and business intelligence (ISCBI 2015), Bali, Indonesia, pp 1–5
Wang GG, Guo LH, Wang HQ et al (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24(3–4):853–871
Cui ZH, Fan S, Zeng J et al (2013) Artificial plant optimization algorithm with three-period photosynthesis. Int J Bio-Inspir Comput 5(2):133–139
Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algorithm: a memetic metaheuristic for discrete optimization. Eng Optim 38(2):129–154
Tawhid MA, Ali AF (2016) A simplex social spider algorithm for solving integer programming and minimax problems. Mem Comput 1–20. doi: 10.1007/s12293-016-0180-7
Wang GG, Deb S, Cui ZH (2015) Monarch butterfly optimization. Neural Comput Appl 1–20. doi: 10.1007/s00521-015-1923-y
Feng YH, Wang GG, Deb S et al (2015) Solving 0–1 Knapsack problem by a novel binary monarch butterfly optimization. Neural Comput Appl 1–16. doi: 10.1007/s00521-015-2135-1
Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471
Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359
Yang DX, Li G, Cheng GD (2007) On the efficiency of chaos optimization algorithms for global optimization. Chaos Solit Fract 34(4):1366–1375
Alatas B, Akin E, Ozer AB (2009) Chaos embedded particle swarm optimization algorithms. Chaos Solit Fract 40(4):1715–1734
Gharooni-Fard G, Moein-Darbari F, Deldari H, Morvaridi A (2010) Scheduling of scientific workflows using a chaos-genetic algorithm. Proc Comput Sci 1(1):1445–1454
Wang GG, Deb S, Gandomi AH et al (2015) Chaotic cuckoo search. Soft Comput 5:1–14
Mathews GB (1988) On the partition of numbers. Introduction to analysis of the infinite. Springer, New York
Tavazoei MS, Haeri M (2007) Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms. Appl Math Comput 187:1076–1085
Coelho LDS, Mariani VC (2008) Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Syst Appl 34(3):1905–1913
Rudolph G (1997) Local convergence rates of simple evolutionary algorithms with Cauchy mutations. IEEE Trans Evol Comput 1(4):249–258
Hinterding R (1995) Gaussian mutation and self-adaption for numeric genetic algorithms. In: Evolutionary computation, IEEE international conference on
He YC, Wang XZ, Kou YZ (2007) A binary differential evolution algorithm with hybrid encoding. J Comput Res Dev 44(9):1476–1484
He YC, Song JM, Zhang JM, Gou HY (2015) Research on genetic algorithms for solving static and dynamic knapsack problems. Appl Res Comput 32(4):1011–1015
Martello S, Toth P (1990) Knapsack problems: algorithms and computer implementations. Wiley, Amsterdam
He YC, Zhang XL, Li WB et al (2016) Algorithms for randomized time-varying knapsack problems. J Comb Optim 31(1):95–117