Solventless liquid phase conversion of glycerol with CO2 to H2, CO, ketones and epoxides in semi-batch reactor

Journal of CO2 Utilization - Tập 29 - Trang 271-282 - 2019
Pedro P. Florez-Rodriguez1, Aracelis J. Pamphile-Adrián1, Fabio B. Passos2
1Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
2Departamento de Engenharia Química e de Petróleo, Universidade Federal Fluminense, Rua Passo da Pátria, 156, 24210-240, Niterói, RJ, Brazil

Tài liệu tham khảo

Knothe, 2010 Behr, 2008, Improved utilisation of renewable resources: new important derivatives of glycerol, Green Chem., 10, 13, 10.1039/B710561D Bradford, 1999, CO2Reforming of CH4, Catal. Rev., 41, 1, 10.1081/CR-100101948 Centi, 2013, Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries, Energy Environ. Sci., 6, 1711, 10.1039/c3ee00056g Aziz, 2015, CO2 methanation over heterogeneous catalysts: recent progress and future prospects, Green Chem., 17, 2647, 10.1039/C5GC00119F Olajire, 2013, Valorization of greenhouse carbon dioxide emissions into value-added products by catalytic processes, J. CO2 Util., 3-4, 74, 10.1016/j.jcou.2013.10.004 dos Santos, 2015, Adsorption of CO2 on amine-functionalised MCM-41: experimental and theoretical studies, Phys. Chem. Chem. Phys., 17, 11095, 10.1039/C5CP00581G Liu, 2016, Novel urea derivative-based ionic liquids with dual-functions: CO2 capture and conversion under metal- and solvent-free conditions, Green Chem., 18, 2851, 10.1039/C5GC02605A Calderone, 2011, Bimetallic catalysts for the Fischer-Tropsch reaction, Green Chem., 13, 1950, 10.1039/c0gc00919a Bartolini, 2015, Effect of the porous structure of the support on hydrocarbon distribution in the Fischer–Tropsch reaction, J. Power Sources, 285, 1, 10.1016/j.jpowsour.2015.03.081 Álvarez, 2018, CO 2 reforming of methane over Ni-Ru supported catalysts: on the nature of active sites by operando DRIFTS study, J. CO2 Util., 24, 509, 10.1016/j.jcou.2018.01.027 Gu, 2010, Glycerol as a sustainable solvent for green chemistry, Green Chem., 12, 1127, 10.1039/c001628d García, 2014, Glycerol based solvents: synthesis, properties and applications, Green Chem., 16, 1007, 10.1039/C3GC41857J Cintas, 2014, Glycerol: a solvent and a building block of choice for microwave and ultrasound irradiation procedures, Green Chem., 16, 1056, 10.1039/c3gc41955j Katryniok, 2011, Selective catalytic oxidation of glycerol: perspectives for high value chemicals, Green Chem., 13, 1960, 10.1039/c1gc15320j Zhou, 2011, Selective oxidation of biorenewable glycerol with molecular oxygen over Cu-containing layered double hydroxide-based catalysts, Catal. Sci. Technol., 1, 111, 10.1039/c0cy00018c Martin, 2013, Glycerol hydrogenolysis into propanediols using in situ generated hydrogen – a critical review, Eur. J. Lipid Sci. Technol., 115, 9, 10.1002/ejlt.201200207 Salazar, 2014, Selective production of 1,2-propanediol by hydrogenolysis of glycerol over bimetallic Ru–Cu nanoparticles supported on TiO2, Appl. Catal. A-Gen, 482, 137, 10.1016/j.apcata.2014.06.002 Pamphile-Adrián, 2016, Iridium catalysts for C–C and C–O hydrogenolysis: catalytic consequences of iridium sites, J. Braz. Chem. Soc., 27, 958 Mota, 2009, Gliceroquímica: Novos produtos e processos a partir da glicerina de produção de biodiesel, Quim. Nova, 32, 639, 10.1590/S0100-40422009000300008 Tran, 2013, Conversion of glycerol to hydrogen rich gas, Chem. Soc. Rev., 42, 9454, 10.1039/c3cs60227c Dang, 2016, A bi-functional Co–CaO–Ca12Al14O33 catalyst for sorption-enhanced steam reforming of glycerol to high-purity hydrogen, Chem. Eng. J., 286, 329, 10.1016/j.cej.2015.10.073 Ordomsky, 2014, Mastering a biphasic single-reactor process for direct conversion of glycerol into liquid hydrocarbon fuels, Green Chem., 16, 2128, 10.1039/C3GC42319K Soares, 2016, Alumina supported bimetallic Pt–Fe catalysts applied to glycerol hydrogenolysis and aqueous phase reforming, Appl. Catal., B-Environ., 185, 77, 10.1016/j.apcatb.2015.11.003 Mane, 2012, Simultaneous glycerol dehydration and in situ hydrogenolysis over Cu-Al oxide under an inert atmosphere, Green Chem., 14, 2780, 10.1039/c2gc35661a Tao, 2013, Sustainable production of acrolein: catalytic performance of hydrated tantalum oxides for gas-phase dehydration of glycerol, Green Chem., 15, 696, 10.1039/c2gc16483c Ochoa-Gómez, 2012, Synthesis of glycerol 1,2-carbonate by transesterification of glycerol with dimethyl carbonate using triethylamine as a facile separable homogeneous catalyst, Green Chem., 14, 3368, 10.1039/c2gc35992h Bai, 2013, One-pot synthesis of glycidol from glycerol and dimethyl carbonate over a highly efficient and easily available solid catalyst NaAlO2, Green Chem., 15, 2929, 10.1039/C3GC40855H Martin, 2011, Oligomerization of glycerol – a critical review, Eur. J. Lipid Sci. Technol., 113, 100, 10.1002/ejlt.201000386 Sivaiah, 2012, Recent developments in acid and base-catalyzed etherification of glycerol to polyglycerols, Catal. Today, 198, 305, 10.1016/j.cattod.2012.04.073 Sayoud, 2015, Homogeneously-acid catalyzed oligomerization of glycerol, Green Chem., 17, 4307, 10.1039/C5GC01020A Ochoa-Gómez, 2012, A brief review on industrial alternatives for the manufacturing of glycerol carbonate, a green chemical, Org. Process Res. Dev., 16, 389, 10.1021/op200369v Sonnati, 2013, Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications, Green Chem., 15, 283, 10.1039/C2GC36525A Vieville, 1998, Synthesis of glycerol carbonate by direct carbonatation of glycerol in supercritical CO2 in the presence of zeolites and ion exchange resins, Catal. Lett., 56, 245, 10.1023/A:1019050205502 George, 2009, Methanol assisted selective formation of 1,2-glycerol carbonate from glycerol and carbon dioxide using nBu2SnO as a catalyst, J. Mol. Catal. A Chem., 304, 1, 10.1016/j.molcata.2009.01.010 Li, 2011, Chemical equilibrium of glycerol carbonate synthesis from glycerol, J. Chem. Thermodyn., 43, 731, 10.1016/j.jct.2010.12.013 Dibenedetto, 2011, Converting wastes into added value products: from glycerol to glycerol carbonate, glycidol and epichlorohydrin using environmentally friendly synthetic routes, Tetrahedron, 67, 1308, 10.1016/j.tet.2010.11.070 Ma, 2012, One-pot conversion of CO2 and glycerol to value-added products using propylene oxide as the coupling agent, Green Chem., 14, 1743, 10.1039/c2gc35150a Liu, 2018, Transformation of CO2 with glycerol to glycerol carbonate by a novel ZnWO4-ZnO catalyst, J. CO2 Util., 26, 370, 10.1016/j.jcou.2018.05.025 Carrera, 2018, CO2+ Methanol + Glycerol: Multiphase behaviour, J. Supercrit. Fluids, 141, 260, 10.1016/j.supflu.2017.12.032 Medina-Gonzalez, 2013, Phase equilibrium of the CO2/glycerol system: experimental data by in situ FT-IR spectroscopy and thermodynamic modeling, J. Supercrit. Fluids, 73, 97, 10.1016/j.supflu.2012.11.012 Wang, 2009, Thermodynamic analysis of glycerol dry reforming for hydrogen and synthesis gas production, Fuel, 88, 2148, 10.1016/j.fuel.2009.01.015 Kale, 2010, Thermodynamic analysis of dry autothermal reforming of glycerol, Fuel process. Technol., 91, 520, 10.1016/j.fuproc.2009.12.015 Siew, 2014, Characterization of La-promoted Ni/Al2O3 catalysts for hydrogen production from glycerol dry reforming, J. Energy Chem., 23, 15, 10.1016/S2095-4956(14)60112-1 Siew, 2014, Production of CO-rich hydrogen gas from glycerol dry reforming over La-promoted Ni/Al2O3 catalyst, Int. J. Hydrogen Energy, 39, 6927, 10.1016/j.ijhydene.2014.02.059 Siew, 2015, Syngas production from glycerol-dry(CO2) reforming over La-promoted Ni/Al2O3 catalyst, Renew. Energ., 74, 441, 10.1016/j.renene.2014.08.048 Tavanarad, 2017, Synthesis and application of noble metal nanocatalysts supported on MgAl2O4 in glycerol dry reforming reaction, Catal. Lett., 148, 164, 10.1007/s10562-017-2221-3 Tavanarad, 2018, Production of syngas via glycerol dry reforming on Ni catalysts supported on mesoporous nanocrystalline Al2O3, J. CO2 Util., 24, 298, 10.1016/j.jcou.2018.01.009 Su, 2017, Metal-free catalytic conversion of CO2 and glycerol to glycerol carbonate, Green Chem., 19, 1775, 10.1039/C7GC00260B Aresta, 2006, A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: The role of the catalyst, solvent and reaction conditions, J. Mol. Catal. A Chem., 257, 149, 10.1016/j.molcata.2006.05.021 Ozorio, 2015, Metal-impregnated zeolite Y as efficient catalyst for the direct carbonation of glycerol with CO2, Appl. Catal., A-Gen, 504, 187, 10.1016/j.apcata.2014.12.010 Ozorio, 2017, Direct carbonation of glycerol with CO2 catalyzed by metal oxides, Chemphyschem: Eur. J. Chem. Phys. Phys. Chem., 18, 3260, 10.1002/cphc.201700579 Florez-Rodriguez, 2014, Glycerol conversion in the presence of carbon dioxide on alumina supported nickel catalyst, Catal. Today, 237, 38, 10.1016/j.cattod.2013.12.026 Cheng, 2010, H2-rich synthesis gas production over Co/Al2O3 catalyst via glycerol steam reforming, Catal. Commun., 12, 292, 10.1016/j.catcom.2010.09.018 van Ryneveld, 2011, A catalytic route to lower alcohols from glycerol using Ni-supported catalysts, Green Chem., 13, 1819, 10.1039/c0gc00839g Checa, 2012, Catalytic transformation of glycerol on several metal systems supported on ZnO, Catal. Today, 196, 91, 10.1016/j.cattod.2012.02.036 Mane, 2013, Active sites in modified copper catalysts for selective liquid phase dehydration of aqueous glycerol to acetol, RSC Adv., 3, 16499, 10.1039/c3ra42348d Hu, 2013, Physically mixed ZnO and skeletal NiMo for one-pot reforming-hydrogenolysis of glycerol to 1,2-propanediol, Chin. J. Catal., 34, 1020, 10.1016/S1872-2067(12)60543-9 Rynkowski, 1993, On the nature of oxidic nickel phases in NiO/γ-Al2O3 catalysts, Appl. Catal. A-Gen, 106, 73, 10.1016/0926-860X(93)80156-K Sánchez-Sánchez, 2007, Ethanol steam reforming over Ni/MxOy–Al2O3(M=Ce, La, Zr and Mg) catalysts: Influence of support on the hydrogen production, Int. J. Hydrogen Energy, 32, 1462, 10.1016/j.ijhydene.2006.10.025 Frusteri, 2006, Steam and auto-thermal reforming of bio-ethanol over MgO and Ni supported catalysts, Int. J. Hydrogen Energy, 31, 2193, 10.1016/j.ijhydene.2006.02.024 Oliveira, 2012, Support effect on carbon nanotube growth by methane chemical vapor deposition on cobalt catalysts, J. Braz. Chem. Soc., 23, 868, 10.1590/S0103-50532012000500012 Das, 2003, Fischer–tropsch synthesis: characterization and catalytic properties of rhenium promoted cobalt alumina catalysts☆, Fuel, 82, 805, 10.1016/S0016-2361(02)00361-7 El Doukkali, 2013, Pt monometallic and bimetallic catalysts prepared by acid sol–gel method for liquid phase reforming of bioglycerol, J. Mol. Catal. A Chem., 368–369, 125, 10.1016/j.molcata.2012.12.006 Grzybowska, 1998, Chromium Oxide/Alumina catalysts in oxidative dehydrogenation of isobutane, J. Catal., 178, 687, 10.1006/jcat.1998.2203 Zaki, 1998, Stability of surface chromate – a physicochemical investigation in relevance to environmental reservations about calcined chromia catalysts, Appl. Catal. A-Gen, 171, 315, 10.1016/S0926-860X(98)00088-X Figueiredo, 2010, Influence of the preparation methods and redox properties of Cu/ZnO/Al2O3 catalysts for the water gas shift reaction, J. Mol. Catal. A Chem., 318, 15, 10.1016/j.molcata.2009.10.028 Zhu, 2014, Zn promoted Cu–Al catalyst for hydrogenation of ethyl acetate to alcohol, J. Ind. Eng. Chem., 20, 2341, 10.1016/j.jiec.2013.10.010 Haber, 1977, On chemical shifts of ESCA and Auger lines in cobalt oxides, J. Electron. Spectrosc. Relat. Phenom., 12, 305, 10.1016/0368-2048(77)85081-0 Biesinger, 2010, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn, Appl. Surf. Sci., 257, 887, 10.1016/j.apsusc.2010.07.086 Aronniemi, 2005, Chemical state quantification of iron and chromium oxides using XPS: the effect of the background subtraction method, Surf. Sci., 578, 108, 10.1016/j.susc.2005.01.019 Alhanash, 2010, Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt, Appl. Catal. A-Gen, 378, 11, 10.1016/j.apcata.2010.01.043 Pendem, 2012, Aqueous phase reforming of glycerol to 1,2-propanediol over Pt-nanoparticles supported on hydrotalcite in the absence of hydrogen, Green Chem., 14, 3107, 10.1039/c2gc36019e Ciftci, 2014, Aqueous phase reforming of glycerol over Re-promoted Pt and Rh catalysts, Green Chem., 16, 853, 10.1039/C3GC42046A Alipour, 2014, Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane, J. Ind. Eng. Chem., 20, 2858, 10.1016/j.jiec.2013.11.018 Nakagawa, 2011, Heterogeneous catalysis of the glycerol hydrogenolysis, Catal. Sci. Technol., 1, 179, 10.1039/c0cy00054j Corma, 2008, Biomass to chemicals: catalytic conversion of glycerol/water mixtures into acrolein, reaction network, J. Catal., 257, 163, 10.1016/j.jcat.2008.04.016 Chen, 2010, Pinacol-type rearrangement catalyzed by Zr-incorporated SBA-15, J. Catal., 270, 196, 10.1016/j.jcat.2009.12.020 Mouloungui, 2004, Conférence chevreul, Ol. corps gras, Lipides, 11, 425