Solvent vapor annealing induced polymorphic transformation of polybutene-1
Tóm tắt
Solvent annealing is a facile method for changing the aggregated microstructure and physical properties of polymer materials. In this paper, we addressed the effects of solvent vapor annealing, including chloroform and water vapor, on the polymorphic transformation in both hot-pressed film and electrospun nonwoven of isotactic polybutene-1 (PB-1) by means of in situ Fourier transform infrared spectroscopy (FTIR). The pretty rapid transition rate caused by the increased motion of molecular chains under chloroform vapor is associated with a lowest crystallinity. Also, a decreased crystallinity with the crystal transition occurred in electrospun nonwovens resulting from the relaxation of the stretched molecular chains into amorphous state rather than realignment into crystal form I predominating the crystal transition process.
Tài liệu tham khảo
Shao, H.F., Wang, S.L., Dong, X. and He, A.H., Chinese J. Polym. Sci., 2015, 34(2): 174
He, A.H., Xu, C.S., Shao, H.F., Yao, W. and Huang, B.C., Polym. Degrad. Stab., 2010, 95(9): 1443
Stolte, I., Fischer, M., Roth, R., Borreck, S. and Androsch, R., Polymer, 2015, 63: 30
Kopp, S., Wittmann, J.C. and Lotz, B., Polymer, 1994, 35(5): 916
Chau, K.W., Yang, Y.C. and Geil, P.H., J. Mater. Sci., 1986, 21(9): 3002
De Rosa, C., Auriemma, F., Villani, M., Ruiz de Ballesteros, O., Di Girolamo, R., Tarallo, O. and Malafronte, A., Macromolecules, 2014, 47(3): 1053
Koppj, S., Wlttmann, C. and Lotz, B., J. Mater. Sci., 1994, 29(23): 6159
Causin, V., Marega, C., Marigo, A., Ferrara, G., Idiyatullina, G. and Fantinel, F., Polymer, 2006, 47(13): 4773
Wanjale, S.D. and Jog, J.P., Polymer, 2006, 47(18): 6414
Azzurri, F., Alfonso, G.C., Gómez, M.A., Martì, M.C., Ellis, G. and Marco, C., Macromolecules, 2004, 37(10): 3755
Androsch, R., Hohlfeld, R., Frank, W., Nase, M. and Cavallo, D., Polymer, 2013, 54(10): 2528
Lotz, B., Mathieu, C., Thierry, A., Lovinger, A.J., Rosa, C.D., Ballesteros, O.R. and Auriemma, F., Macromolecules, 1998, 31(26): 9253
Shieh, Y.T., Lee, M.S. and Chen, S.A., Polymer, 2001, 42(9): 4439
Maruyama, M., Sakamoto, Y., Nozaki, K., Yamamoto, T., Kajioka, H., Toda, A. and Yamada, K., Polymer, 2010, 51(23): 5532
Su, F., Li, X., Zhou, W., Zhu, S., Ji, Y., Wang, Z., Qi, Z. and Li, L., Macromolecules, 2013, 46(18): 7399
Chvátalová, L., Benícek, L., Berková, K., Cermák, R., Obadal, M., Verney, V. and Commereuc, S., J. Appl. Polym. Sci., 2012, 124(4): 3407
Cavallo, D., Kanters, M.J.W., Caelers, H.J.M., Portale, G. and Govaert, L.E., Macromolecules, 2014, 47(9): 3033
Wang, Y.T., Jiang, Z.Y., Wu, Z.H. and Men, Y.F., Macomolecules, 2013, 46(2): 518
Wang, Y., Jiang, Z.Y., Fu, L.L., Lu, Y. and Men, Y.F., Macromolecules, 2013, 46(19): 7874
Su, F.M., Li, X.Y., Zhou, W.M., Chen, W., Li, H.L., Cong, Y.H., Hong, Z.H., Qi, Z.M. and Li, L.B., Polymer, 2013, 54(13): 3408
Kaszonyiova, M., Rybnikar, F. and Geil, P.H., J. Macromol. Sci. B., 2004, 43(5): 1095
Li, L., Liu, T., Zhao, L. and Yuan, W.K., Macromolecules, 2009, 42(6): 2286
Luongo, J.P. and Salovey, R., J. Polym. Sci. Polym. Phys., 1966, 4(6): 997
Gohil, R.M., Miles, M.J. and Petermann, J., J. Macromol. Sci. B., 1982, 21(2): 189
Liu, Y.J., Jiang, H.L., Li, Y. and Zhu, K.J., Chinese J. Polym. Sci., 2008, 26(1): 63
Cao, L., Su, D.F., Su, Z.Q. and Chen, X.N., Chinese J. Polym. Sci., 2014, 32(9): 1167
Zhang, L., Guo, Y., Chi, W.H., Shi, H.G., Ren, H.Q. and Guo, T.Y., Chinese J. Polym. Sci., 2014, 32(11):1469
Nie, H.R., Li, J.X., He, A.H., Xu, S.S., Jiang, Q.S. and Han, C.C., Biomacromolecules, 2010, 11(8): 2190
Koombhongse, S., Liu, W. and Reneker, D.H., J. Polym. Sci., Part B: Polym. Phys., 2001, 39(21): 2598
Richard-Lacroix, M. and Pellerin, C., Macromolecules, 2013, 46(24): 9473
Lee, K.H., Snively, C.M., Givens, S., Chase, D.B. and Rabolt, J.F., Macromolecules, 2007, 40(7): 2590
Hu, D.D., Ye, S.B., Yu, F. and Feng, J.C., Chinese J. Polym. Sci., 2016, 34(3): 344