Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems

Springer Science and Business Media LLC - Tập 74 Số 5 - Trang 961-973 - 2007
Hermann J. Heipieper1, Grit Neumann1, Sjef Cornelissen2, Friedhelm Meinhardt3
1Department of Bioremediation, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany
2Department of Biochemical and Chemical Engineering, University of Dortmund, Emil-Figge-Str. 66, 44227, Dortmund, Germany
3Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, 48149, Münster, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahmad S, Johri BN (1993) Microbial transformation of sterols in organic media. Indian J Chem Sect B 32:67–69

Aono R, Doukyu N, Kobayashi H, Nakajima H, Horikoshi K (1994) Oxidative bioconversion of cholesterol by Pseudomonas sp. strain-ST-200 in a water-organic solvent 2-phase system. Appl Environ Microbiol 60:2518–2523

Aono R, Tsukagoshi N, Miyamoto T (2001) Evaluation of the growth inhibition strength of hydrocarbon solvents against Escherichia coli and Pseudomonas putida grown in a two-liquid phase culture system consisting of a medium and organic solvent. Extremophiles 5:11–15

Brink LES, Tramper J (1985) Optimization of organic-solvent in multiphase biocatalysis. Biotechnol Bioeng 27:1258–1269

Bruce LJ, Daugulis AJ (1991) Solvent selection strategies for extractive biocatalysis. Biotechnol Prog 7:116–124

Chen Q, Nijenhuis A, Preusting H, Dolfing J, Janssen DB, Witholt B (1995) Effects of octane on the fatty acid composition and transition temperature of Pseudomonas oleovorans membrane lipids during growth in 2-liquid-phase continuous cultures. Enzyme Microb Technol 17:647–652

Cruden DL, Wolfram JH, Rogers RD, Gibson DT (1992) Physiological properties of a Pseudomonas strain which grows with p-xylene in a two-phase (organic–aqueous) medium. Appl Environ Microbiol 58:2723–2729

Cruz A, Fernandes P, Cabral JMS, Pinheiro HM (2004) Solvent partitioning and whole-cell sitosterol bioconversion activity in aqueous–organic two-phase systems. Enzyme Microb Technol 34:342–353

Daugulis AJ (1997) Partitioning bioreactors. Curr Opin Biotechnol 8:169–174

de Bont JAM (1998) Solvent-tolerant bacteria in biocatalysis. Trends Biotechnol 16:493–499

Diefenbach R, Heipieper HJ, Keweloh H (1992) The conversion of cis- into trans- unsaturated fatty acids in Pseudomonas putida P8: evidence for a role in the regulation of membrane fluidity. Appl Environ Microbiol 38:382–387

Doukyu N, Nakano T, Okuyama Y, Aono R (2002) Isolation of an Acinetobacter sp. ST-550 which produces a high level of indigo in a water–organic solvent two-phase system containing high levels of indole. Appl Microbiol Biotechnol 58:543–546

Favre-Bulle O, Weenink E, Vos T, Preusting H, Witholt B (1993) Continuous bioconversion of N-octane to octanoic-acid by recombinant Escherichia-coli (Alk+) growing in a 2-liquid-phase chemostat. Biotechnol Bioeng 41:263–272

Fredrickson JK, Balkwill DL, Drake GR, Romine MF, Ringelberg DB, White DC (1995) Aromatic-degrading Sphingomonas isolates from the deep subsurface. Appl Environ Microbiol 61:1917–1922

Heipieper HJ, Diefenbach R, Keweloh H (1992) Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 58:1847–1852

Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, de Bont JAM (1994) Mechanisms behind resistance of whole cells to toxic organic solvents. Trends Biotechnol 12:409–415

Heipieper HJ, Meulenbeld G, van Oirschot Q, de Bont JAM (1996) Effect of environmental factors on the trans/cis ratio of unsaturated fatty acids in Pseudomonas putida S12. Appl Environ Microbiol 62:2773–2777

Heipieper HJ, Meinhardt F, Segura A (2003) The cis–trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Lett 229:1–7

Holtwick R, Meinhardt F, Keweloh H (1997) Cis–trans isomerization of unsaturated fatty acids: cloning and sequencing of the cti gene from Pseudomonas putida P8. Appl Environ Microbiol 63:4292–4297

Holtwick R, Keweloh H, Meinhardt F (1999) Cis/trans isomerase of unsaturated fatty acids of Pseudomonas putida P8: evidence for a heme protein of the cytochrome c type. Appl Environ Microbiol 65:2644–2649

Husken LE, Oomes M, Schroen K, Tramper J, de Bont JAM, Beeftink R (2002) Membrane-facilitated bioproduction of 3-methylcatechol in an octanol/water two-phase system. J Biotechnol 96:281–289

Husken LE, Hoogakker J, de Bont JAM, Tramper J, Beeftink HH (2003) Model description of bacterial 3-methylcatechol production in one- and two-phase systems. Bioprocess Biosyst Eng 26:11–17

Ingram LO (1976) Adaptation of membrane lipids to alcohols. J Bacteriol 125:670–678

Ingram LO (1977) Changes in lipid composition of Escherichia coli resulting from growth with organic solvents and with food additives. Appl Environ Microbiol 33:1233–1236

Ingram LO, Buttke TM (1984) Effects of alcohols on micro-organisms. Adv Microb Physiol 25:253–300

Inoue A, Horikoshi K (1989) A Pseudomonas thrives in high concentrations of toluene. Nature 338:264–266

Isken S, de Bont JAM (1996) Active efflux of toluene in a solvent-resistant bacterium. J Bacteriol 178:6056–6058

Isken S, de Bont JAM (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238

Isken S, Heipieper HJ (2002) Toxicity of organic solvents to microoganisms. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 3147–3155

Kabelitz N, Santos PM, Heipieper HJ (2003) Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticus. FEMS Microbiol Lett 220:223–227

Kato C, Inoue A, Horikoshi K (1996) Isolating and characterizing deep-sea marine microorganisms. Trends Biotechnol 14:6–12

Kellerhals MB, Hazenberg W, Witholt B (1999) High cell density fermentations of Pseudomonas oleovorans for the production of mcl-PHAs in two-liquid phase media. Enzyme Microb Technol 24:111–116

Keweloh H, Weyrauch G, Rehm HJ (1990) Phenol-induced membrane changes in free and immobilized Escherichia coli. Appl Microbiol Biotechnol 33:66–71

Kim K, Lee SJ, Lee KH, Lim DB (1998) Isolation and characterization of toluene-sensitive mutants from the toluene-resistant bacterium Pseudomonas putida GM73. J Bacteriol 180:3692–3696

Kiran MD, Annapoorni S, Suzuki I, Murata N, Shivaji S (2005) Cis–trans isomerase gene in psychrophilic Pseudomonas syringae is constitutively expressed during growth and under conditions of temperature and solvent stress. Extremophiles 9:117–125

Kobayashi H, Uematsu K, Hirayama H, Horikoshi K (2000) Novel toluene elimination system in a toluene-tolerant microorganism. J Bacteriol 182:6451–6455

Laane C, Boeren S, Vos K (1985) On optimizing organic solvents in multi-liquid-phase biocatalysis. Trends Biotechnol 3:251–252

Leo AJ (1993) Calculating log P (oct) from structures. Chem Rev 93:1281–1306

Leon R, Fernandes P, Pinheiro HM, Cabral JMS (1998) Whole-cell biocatalysis in organic media. Enzyme Microb Technol 23:483–500

Liu WH, Horng WC, Tsai MS (1996) Bioconversion of cholesterol to cholest-4-en-3-one in aqueous organic solvent two-phase reactors. Enzyme Microb Technol 18:184–189

Makin SA, Beveridge TJ (1996) The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology 142:299–307

Malinowski JJ (2001) Two-phase partitioning bioreactors in fermentation technology. Biotechnol Adv 19:525–538

Matsumoto M, De Bont JAM, Isken S (2002) Isolation and characterization of the solvent-tolerant Bacillus cereus strain R1. J Biosci Bioeng 94:45–51

Meyer D, Witholt B, Schmid A (2005) Suitability of recombinant Escherichia coli and Pseudomonas putida strains for selective biotransformation of m-nitrotoluene by xylene monooxygenase. Appl Environ Microbiol 71:6624–6632

Meyer D, Buehler B, Schmid A (2006) Process and catalyst design objectives for specific redox biocatalysis. Adv Appl Microbiol 59:53–91

Na KS, Kuroda A, Takiguchi N, Ikeda T, Ohtake H, Kato J (2005) Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. J Biosci Bioeng 99:378–382

Neumann G, Kabelitz N, Zehnsdorf A, Miltner A, Lippold H, Meyer D, Schmid A, Heipieper HJ (2005a) Prediction of the adaptability of Pseudomonas putida DOT-T1E to a second phase of a solvent for economically sound two-phase biotransformations. Appl Environ Microbiol 71:6606–6612

Neumann G, Veeranagouda Y, Karegoudar TB, Sahin O, Mausezahl I, Kabelitz N, Kappelmeyer U, Heipieper HJ (2005b) Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles 9:163–168

Neumann G, Cornelissen S, van Breukelen F, Hunger S, Lippold H, Loffhagen N, Wick LY, Heipieper HJ (2006) Energetics and surface properties of Pseudomonas putida DOT-T1E in a two-phase fermentation system with 1-decanol as second phase. Appl Environ Microbiol 72:4232–4238

Nikolova P, Ward OP (1993) Whole-cell biocatalysis in nonconventional media. J Ind Microbiol 12:76–86

Ogino H, Yasui K, Shiotani T, Ishihara T, Ishikawa H (1995) Organic solvent-tolerant bacterium which secretes an organic solvent-stable proteolytic enzyme. Appl Environ Microbiol 61:4258–4262

Osborne SJ, Leaver J, Turner MK, Dunnill P (1990) Correlation of biocatalytic activity in an organic–aqueous two-liquid phase system with solvent concentration in the cell membrane. Enzyme Microb Technol 12:281–291

Paje MLF, Neilan BA, Couperwhite I (1997) A Rhodococcus species that thrives on medium saturated with liquid benzene. Microbiology 143:2975–2981

Panke S, Meyer A, Huber CM, Witholt B, Wubbolts MG (1999) An alkane-responsive expression system for the production of fine chemicals. Appl Environ Microbiol 65:2324–2332

Panke S, Held M, Wubbolts MG, Witholt B, Schmid A (2002) Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase. Biotechnol Bioeng 80:33–41

Pinkart HC, White DC (1997) Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains. J Bacteriol 179:4219–4226

Pinkart HC, Wolfram JW, Rogers R, White DC (1996) Cell envelope changes in solvent-tolerant and solvent-sensitive Pseudomonas putida strains following exposure to o-xylene. Appl Environ Microbiol 62:1129–1132

Ramos JL, Duque E, Huertas MJ, Haidour A (1995) Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol 177:3911–3916

Ramos JL, Gallegos MT, Marques S, Ramos-Gonzalez MI, Espinosa-Urgel M, Segura A (2001) Responses of Gram-negative bacteria to certain environmental stressors. Curr Opin Microbiol 4:166–171

Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in Gram-negative bacteria. Annu Rev Microbiol 56:743–768

Rekker RF, Kort HMD (1979) Hydrophobic fragmental constant—extension to a 1000 data point set. Eur J Med Chem 14:479–488

Reva ON, Weinel C, Weinel M, Bohm K, Stjepandic D, Hoheisel JD, Tummler B (2006) Functional genomics of stress response in Pseudomonas putida KT2440. J Bacteriol 188:4079–4092

Rojas A, Duque E, Schmid A, Hurtado A, Ramos JL, Segura A (2004) Biotransformation in double-phase systems: physiological responses of Pseudomonas putida DOT-T1E to a double phase made of aliphatic alcohols and biosynthesis of substituted catechols. Appl Environ Microbiol 70:3637–3643

Salter GJ, Kell DB (1995) Solvent selection for whole cell biotransformations in organic media. Crit Rev Biotechnol 15:139–177

Santos PM, Benndorf D, Sa-Correia I (2004) Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 4:2640–2652

Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153:263–268

Sardessai YN, Bhosle S (2004) Industrial potential of organic solvent tolerant bacteria. Biotechnol Prog 20:655–660

Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

Schmid A, Hollmann F, Park JB, Buhler B (2002) The use of enzymes in the chemical industry in Europe. Curr Opin Biotechnol 13:359–366

Schoemaker HE, Mink D, Wubbolts MG (2003) Dispelling the myths—biocatalysis in industrial synthesis. Science 299:1694–1697

Segura A, Duque E, Mosqueda G, Ramos JL, Junker F (1999) Multiple responses of Gram-negative bacteria to organic solvents. Environ Microbiol 1:191–198

Segura A, Godoy P, van Dillewijn P, Hurtado A, Arroyo N, Santacruz S, Ramos JL (2005) Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. J Bacteriol 187:5937–5945

Shima H, Kudo T, Horikoshi K (1991) Isolation of toluene-resistant mutants from Pseudomonas putida Ppg1 (ATCC 17453). Agric Biol Chem 55:1197–1199

Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

Sinensky M (1974) Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 71:522–525

van Sonsbeek HM, Beeftink HH, Tramper J (1993) Two-liquid-phase bioreactors. Enzyme Microb Technol 15:722–729

Veeranagouda Y, Karegoudar TB, Neumann G, Heipieper HJ (2006) Enterobacter sp. VKGH12 growing with n-butanol as the sole carbon source and cells to which the alcohol is added as pure toxin show considerable differences in their adaptive responses. FEMS Microbiol Lett 254:48–54

Volkers RJM, de Jong AL, Hulst AG, van Baar BLM, de Bont JAM, Wery J (2006) Chemostat-based proteomic analysis of toluene-affected Pseudomonas putida S12. Environ Microbiol 8:1674–1679

von Wallbrunn A, Heipieper HJ, Meinhardt F (2002) Cis/trans isomerisation of unsaturated fatty acids in a cardiolipin synthase knock-out mutant of Pseudomonas putida P8. Appl Microbiol Biotechnol 60:179–185

von Wallbrunn A, Richnow HH, Neumann G, Meinhardt F, Heipieper HJ (2003) Mechanism of cis–trans isomerization of unsaturated fatty acids in Pseudomonas putida. J Bacteriol 185:1730–1733

Vrionis HA, Kropinski AM, Daugulis AJ (2002) Enhancement of a two-phase partitioning bioreactor system by modification of the microbial catalyst: demonstration of concept. Biotechnol Bioeng 79:587–594

Weber FJ, de Bont JAM (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286:225–245

Wery J, de Bont JAM (2004) Solvent-tolerance of pseudomonads: a new degree of freedom in biocatalysis. In: Ramos JL (ed) Pseudomonas, vol 3: biosynthesis of macromolecules and molecular metabolism. Kluwer, Dordrecht, pp 609–634

Wery J, da Silva DIM, de Bont JAM (2000) A genetically modified solvent-tolerant bacterium for optimized production of a toxic fine chemical. Appl Microbiol Biotechnol 54:180–185

Wick LY, de Munain AR, Springael D, Harms H (2002) Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol 58:378–385

Wierckx NJP, Ballerstedt H, de Bont JAM, Wery J (2005) Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl Environ Microbiol 71:8221–8227

Witholt B, Desmet MJ, Kingma J, Vanbeilen JB, Kok M, Lageveen RG, Eggink G (1990) Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors—background and economic potential. Trends Biotechnol 8:46–52

Wubbolts MG, FavreBulle O, Witholt B (1996) Biosynthesis of synthons in two-liquid-phase media. Biotechnol Bioeng 52:301–308

Zahir Z, Seed KD, Dennis JJ (2006) Isolation and characterization of novel organic solvent-tolerant bacteria. Extremophiles 10:129–138