Solvent effects on the structure-property relationship of anticonvulsant hydantoin derivatives: A solvatochromic analysis

Springer Science and Business Media LLC - Tập 5 - Trang 1-11 - 2011
Nemanja Trišović1, Nataša Valentić1, Gordana Ušćumlić1
1Department of Organic Chemistry, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia

Tóm tắt

Considering the pharmaceutical importance of hydantoins, a set of 25 derivatives of phenytoin, nirvanol and 5-methyl-5-phenylhydantoin, the lipophilicities of which were gradually increased by the introduction of different alkyl, cycloalkyl and alkenyl groups in position N3, was synthesized. Their properties under consideration were either estimated empirically, by UV/Vis spectroscopy, or calculated using established medicinal chemistry software. The UV absorption spectra of the investigated compounds were recorded in the region from 200 to 400 nm, in selected solvents of different polarities. The effects of solvent dipolarity/polarizability and solvent-solute hydrogen bonding interactions were analyzed by means of the linear solvation energy relationship (LSER) concept proposed by Kamlet and Taft. Furthermore, the relationships between solvent-solute interactions and selected structural features of the solutes, which are believed to markedly affect the processes of absorption, distribution, metabolism, excretion and toxicity (ADMETox), were discussed. Satisfactory correlations were found between hydrogen bonding properties and solute size and the in silico calculated bioactivity descriptors, in particular %Abs. (human intestinal absorption), log BB (blood-brain barrier permeation) and log kA (protein binding affinities) parameters. In view of the results of this study, the investigated hydantoin derivatives met the pharmacokinetic criteria for pre-selection as drug candidates and qualified them for the pharmacodynamic phase of antiepileptic drug development.

Tài liệu tham khảo

Yaari Y, Selzer ME, Pincus JH: Phenytoin: mechanisms of its anticonvulsant action. Ann Neurol. 1986, 20: 171-184. 10.1002/ana.410200202. Küpfer A, Brilis GM, Watson JT, Harris TM: A major pathway of mephenytoin metabolism in man. Aromatic hydroxylation to p-hydroxymephenytoin. Drug Metab Dispos. 1980, 8: 1-4. Ellis FA: Reactions to nirvanol, phenytoin sodium and phenobarbital: report of a case of ectodermosis erosiva pluriorificialis following the ingestion of phenytoin sodium. South Med J. 1943, 36: 575-579. 10.1097/00007611-194308000-00007. Carter CA, Helms RA, Boehm R: Ethotoin in seizures of childhood and adolescence. Neurol. 1984, 34: 791-795. Brouillette WJ, Brown GB, DeLorey TM, Liang G: Sodium channel binding and anticonvulsant activities of hydantoins containing conformationally constrained 5-phenyl substituents. J Pharm Sci. 1990, 79: 871-874. 10.1002/jps.2600791005. Brown ML, Brown GB, Brouillette WJ: Effects of log P and phenyl ring conformation on the binding of 5-phenylhydantoins to the voltage-dependent sodium channel. J Med Chem. 1997, 40: 602-607. 10.1021/jm960692v. Smythies JR: Receptor modeling for anticonvulsant and convulsant drugs. Antiepileptic Drugs: Mechanism of Action. Edited by: Glasser GH, Penry JK, Woodbury DM. 1980, New York: Raven Press, 207-222. Poupaert JH, Vandervorst D, Guiot P, Moustafa MMM, Dumont P: Structure-activity relationships of phenytoin-like anticonvulsant drugs. J Med Chem. 1984, 27: 76-78. 10.1021/jm00367a015. Cortes S, Liao ZK, Watson D, Kohn H: Effect of structural modification of the hydantoin ring on anticonvulsant activity. J Med Chem. 1985, 28: 601-606. 10.1021/jm50001a012. Roszak AW, Weaver DF: 5,5-Diphenyl-2-thiohydantoin. Acta Cryst C. 1998, 54: 1168-1170. 10.1107/S0108270197019963. Scholl S, Koch A, Henning D, Kempter G, Kleinpeter E: The influence of structure and lipophilicity of hydantoin derivatives on anticonvulsant activity. Struct Chem. 1999, 10: 355-366. 10.1023/A:1022091411018. Abraham MH, Lieb WR, Franks NP: Role of hydrogen bonding in general anesthesia. J Pharm Sci. 1991, 80: 719-724. 10.1002/jps.2600800802. Abraham MH: Application of solvation equations to chemical and biochemical processes. Pure Appl Chem. 1993, 65: 2503-2512. 10.1351/pac199365122503. Abraham MH, Ibrahim A, Zissimos AM, Zhao YH, Comer J, Reynolds DP: Application of hydrogen bonding calculations in property based drug design. Drug Discov Today. 2002, 7: 1056-1063. 10.1016/S1359-6446(02)02478-9. Perišić-Janjić N, Kaliszan R, Wiczling P, Milošević N, Ušćumlić G, Banjac N: Reversed-phase TLC and HPLC retention data in correlation studies with in silico molecular descriptors and druglikeness droperties of newly synthesized anticonvulsant succinimide derivatives. Mol Pharmaceut. 2011, 8: 555-563. 10.1021/mp100373d. Kamlet MJ, Abboud JLM, Abraham MH, Taft RW: Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π*, α, and β, and some methods for simplifying the generalized solvatochromic equation. J Org Chem. 1983, 48: 2877-2887. 10.1021/jo00165a018. Banjac N, Ušćumlić G, Valentić N, Mijin D: Solvent effects on the structure-activity relationship of pharmacological active 3-substituted-5,5-diphenylhydantoins. J Solution Chem. 2007, 36: 869-878. 10.1007/s10953-007-9153-2. Trišović N, Banjac N, Valentić N, Ušćumlić G: Solvent effects on the structure-activity relationship of phenytoin-like anticonvulsant drugs. J Solution Chem. 2009, 38: 199-208. 10.1007/s10953-008-9367-y. Bucherer HT, Lieb VA: Syntheses of hydantoins. II. Formation of substituted hydantoins from aldehydes and ketones. J Prakt Chem. 1934, 141: 5-43. 10.1002/prac.19341410102. Suzuki H, Kneller MB, Rock DA, Jones JP, Trager WF, Rettie AE: Active-site characteristics of CYP2C19 and CYP2C9 probed with hydantoin and barbiturate inhibitors. Arch Biochem Biophys. 2004, 429: 1-15. 10.1016/j.abb.2004.05.015. Muccioli GG, Poupaert JH, Wouters J, Norberg B, Poppitz W, Scriba GKE, Lambert DM: A rapid and efficient microwave-assisted synthesis of hydantoins and thiohydantoins. Tetrahedron. 2003, 59: 1301-1307. 10.1016/S0040-4020(03)00033-4. Trišović N, Valentić N, Erović M, Đaković-Sekulić T, Ušćumlić G, Juranić I: Synthesis, structure and solvatochromic properties of pharmacologically active 5-substituted 5-phenylhydantoins. Monats Chem. 10.1007/s00706-011-0639-7. doi:10.1007/s00706-011-0639-7. Marcus Y: The properties of organic liquids that are relevant to their use as solvating solvents. Chem Soc Rev. 1993, 22: 409-416. 10.1039/cs9932200409. Mather D, Shorter J: The influence of the solvent on organic reactivity. Part 5. Kinetics of the reaction of diazodiphenylmethane with benzoic acid in branched-chain alkanols and in electronegatively substituted alcohols. J Chem Soc Perkin Trans II. 1983, 1179-1183. Bauer M, Rollberg A, Barth A, Spange S: Differentiating between dipolarity and polarizability effects of solvents using the solvatochromism of barbiturate dyes. Eur J Org Chem. 2008, 4475-4481. Stuckey RE: The absorption spectra of organic compounds containing nitrogen. I. Derivatives of hydantoin. J Chem Soc. 1947, 169: 331-334. Tan SF, Ang KP, Fong YF, Jayachandran H: Ionization constants of 5-arylmethylenehydantoins in 80% (w/w) dimethyl sulfoxide-water at 25°. J Chem Soc Perkin Trans II. 1988, 473-476. Reinchard C: Solvents and Solvent Effects in Organic Chemistry. 2003, Weinheim: Wiley - VCH, 457- Unger SH, Hansch C: Quantitative models of steric effects. Prog Phys Org Chem. 1976, 12: 91-118. Komiya I, Park JY, Kamani A, Ho NFH, Higuchi WI: Quantitative mechanistic studies in simultaneous fluid flow and intestinal absorption using steroids as model solutes. Int J Pharm. 1980, 4: 249-262. 10.1016/0378-5173(80)90140-4. Taylor DC, Pownwall R, Burke W: The absorption of β-adrenoceptor antagonists in rat in-situ small intestine; the effect of lipophilicity. J Pharm Pharmacol. 1985, 37: 280-283. Levin VA: Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem. 1980, 23: 682-684. 10.1021/jm00180a022. Artursson P: Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J Pharm Sci. 1990, 79: 476-482. 10.1002/jps.2600790604. Buur A, Trier L, Magnusson C, Artursson P: Permeability of 5-fluorouracil and prodrugs in Caco-2 cell monolayers. Int J Pharm. 1996, 129: 223-231. 10.1016/0378-5173(95)04331-4. Zhao YH, Le J, Abraham MH, Hersey A, Eddershaw PJ, Luscombe CN, Boutina D, Beck G, Sherborne B, Cooper I, Platts JA: Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors. J Pharm Sci. 2001, 90: 749-784. 10.1002/jps.1031. Zhao YH, Abraham MH, Hersey A, Luscombe CN: Quantitative relationship between rat intestinal absorption and Abraham descriptors. Eur J Med Chem. 2003, 38: 939-947. 10.1016/j.ejmech.2003.07.005. Hansch C, Björkroth JP, Leo A: Hydrophobicity and central nervous system agents: on the principle of minimal hydrophobicity in drug design. J Pharm Sci. 1987, 76: 663-687. 10.1002/jps.2600760902. Yamagami C, Sonoda C, Takao N, Tanaka M, Yamada J, Horisaka K, Fujita T: A quantitative structure-activity study of anticonvulsant benzyl N,N-dimethylcarbamates. Chem Pharm Bull. 1982, 30: 4175-4180. Lombardo F, Blake JF, Curatolo WJ: Computation of brain-blood partitioning of organic solutes via free energy calculations. J Med Chem. 1996, 39: 4750-4755. 10.1021/jm960163r. Hou T, Xu X: ADME evaluation in drug discovery. 1. Applications of genetic algorithms to the prediction of blood-brain partitioning of a large set of drugs. J Mol Model. 2002, 8: 337-349. Norinder U, Haeberlein M: Computational approaches to the prediction of the blood-brain distribution. Adv Drug Deliv Rev. 2002, 54: 291-313. 10.1016/S0169-409X(02)00005-4. Peterson GM, McLean S, Aldous S, von Witt RJ, Mollingen KS: Plasma protein binding of phenytoin in 100 epileptic patients. Brit J Clin Pharmacol. 1982, 14: 298-300. Seedher N, Agarwal P: Reversible binding of some isoxazolyl penicillins with serum albumin using fluorescence spectroscopic technique. Ind J Pharm Sci. 2006, 68: 327-331. 10.4103/0250-474X.26667. Kratochwil NA, Huber W, Müller F, Kansy M, Gerber PR: Predicting plasma protein binding of drugs: a new approach. Biochem Pharmacol. 2002, 64: 1355-1374. 10.1016/S0006-2952(02)01074-2.