Solvent Relaxation in Phospholipid Bilayers: Principles and Recent Applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
E. G. Finer and A. Darke (1974). Phospholipid hydration studied by deuteron magnetic-resonance spectroscopy. Chem. Phys. Lipids 12(1), 1–16.
T. Sparrman and P. O. Westlund (2003). An NMR line shape and relaxation analysis of heavy water powder spectra of the l-alpha, l-beta′, and P-beta′ phases in the DPPC/water system. Phys. Chem. Chem. Phys. 5(10), 2114–2121.
P. O. Westlund (2000). Line shape analysis of NMR powder spectra of (H2O)-H-2 in lipid bilayer systems. J. Phys. Chem. B 104(25), 6059–6064.
D. L. Bernik, D. Zubiri, E. Tymczyszyn, and E. A. Disalvo (2001). Polarity and packing at the carbonyl and phosphate regions of lipid bilayers. Langmuir 17(21), 6438–6442.
A. Chattopadhyay (2003). Exploring membrane organization and dynamics by the wavelength-selective fluorescence approach. Chem. Phys. Lipids 122(1–2), 3–17.
S. Mazeres, V. Schram, J. F. Tocanne, and A. Lopez (1996). 7-Nitrobenz-2-oxa-1,3-diazole-4-yl-labeled phospholipids in lipid membranes: Differences in fluorescence behavior. Biophys. J. 71(1), 327–335.
S. Tristram-Nagle and J. F. Nagle (2004). Lipid bilayers: Thermodynamics, structure, fluctuations, and interactions. Chem. Phys. Lipids 127(1), 3–14.
M. C. Rheinstadter, C. Ollinger, G. Fragneto, and T. Salditt (2004). Collective dynamics in phospholipid bilayers investigated by inelastic neutron scattering: Exploring the dynamics of biological membranes with neutrons. Physica B Condens. Matter 350(1–3), 136–139.
P. Jedlovszky and M. Mezei (2001). Orientational order of the water molecules across a fully hydrated DMPC bilayer: A Monte Carlo simulation study. J. Phys. Chem. B 105(17), 3614–3623.
F. Zhou and K. Schulten (1995). Molecular-dynamics study of a membrane water interface. J. Phys. Chem. 99(7), 2194–2207.
I. Z. Zubrzycki, Y. Xu, M. Madrid, and P. Tang (2000). Molecular dynamics simulations of a fully hydrated dimyristoylphosphatidylcholine membrane in liquid-crystalline phase. J. Chem. Phys. 112(7), 3437–3441.
J. F. Nagle and S. Tristram-Nagle (2000). Structure of lipid bilayers. Biochim. Biophys. Acta Rev. Biomembr. 1469(3), 159–195.
M. Langner and K. Kubica (1999). The electrostatics of lipid surfaces. Chem. Phys. Lipids 101(1), 3–35.
A. Blume, W. Hubner, and G. Messner (1988). Fourier-transform infrared-spectroscopy of C-13=O-labeled phospholipids. Hydrogen-bonding to carbonyl groups. Biochemistry 27(21), 8239–8249.
J. Grdadolnik, J. Kidric, and D. Hadzi (1991). Hydration of phosphatidylcholine reverse micelles and multilayers—An infrared spectroscopic study. Chem. Phys. Lipids 59(1), 57–68.
H. Morgan, D. M. Taylor, and O. N. Oliveira (1988). Two-dimensional proton conduction at a membrane-surface—Influence of molecular packing and hydrogen-bonding. Chem. Phys. Lett. 150(3–4), 311–314.
M. Pasenkiewicz-Gierula, Y. Takaoka, H. Miyagawa, K. Kitamura, and A. Kusumi (1997). Hydrogen bonding of water to phosphatidylcholine in the membrane as studied by a molecular dynamics simulation: Location, geometry, and lipid–lipid bridging via hydrogen-bonded water. J. Phys. Chem. A 101(20), 3677–3691.
A. Chattopadhyay and S. Mukherjee (1999). Red edge excitation shift of a deeply embedded membrane probe: Implications in water penetration in the bilayer. J. Phys. Chem. B 103(38), 8180–8185.
E. Perochon, A. Lopez, and J. F. Tocanne (1992). Polarity of lipid bilayers—A fluorescence investigation. Biochemistry 31(33), 7672–7682.
V. Kurze, B. Steinbauer, T. Huber, and K. Beyer (2000). A H-2 NMR study of macroscopically aligned bilayer membranes containing interfacial hydroxyl residues. Biophys. J. 78(5), 2441–2451.
S. J. Marrink and H. J. C. Berendsen (1994). Simulation of water transport through a lipid-membrane. J. Phys. Chem. 98(15), 4155–4168.
S. J. Marrink, M. Berkowitz, and H. J. C. Berendsen (1993). Molecular-dynamics simulation of a membrane water interface—The ordering of water and its relation to the hydration force. Langmuir 9(11), 3122–3131.
J. F. Nagle and M. C. Wiener (1988). Structure of fully hydrated bilayer dispersions. Biochim. Biophys. Acta 942(1), 1–10.
U. Kaatze, A. Dittrich, K. D. Gopel, and R. Pottel (1984). Dielectric studies on water in solutions of purified lecithin vesicles. Chem. Phys. Lipids 35(3), 279–290.
A. P. Winiski, M. Eisenberg, M. Langner, and S. McLaughlin (1988). Fluorescence probes of electrostatic potential 1nm from membrane surface. Biochemistry 27(1), 386–392.
M. Langner, S. D. Cafiso, S. Marcelja, and S. McLaughlin (1990). The electrostatic properties of the phosphoinositides: Theoretical and experimental results. Biophys. J. 57(2), 335–349.
M. Langner and S. W. Hui (1993). Dithionite penetration through phospholipid bilayer as a measure of defects in lipid molecular packing. Chem. Phys. Lipids 65(1), 23–30.
M. R. Eftink (1992). in J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy: Principles. Plenum Press, New York, pp. 53–120.
B. W. Van der Meer, G. Coker, and S. Y. S. Chen (1994). Resonance Energy Transfer: Theory and Data. VCH Verlag, Weinheim.
R. Hutterer, F. W. Schneider, and M. Hof (1997). Anisotropy and lifetime profiles for n-anthroyloxy fatty acids: A fluorescence method for the detection of bilayer interdigitation. Chem. Phys. Lipids 86(1), 51–64.
M. Langner and S. W. Hui (1999). Merocyanine 540 as a fluorescence indicator for molecular packing stress at the onset of lamellar-hexagonal transition of phosphatidylethanolamine bilayers. Biochim. Biophys. Acta 1415(2), 323–330.
K. Kubica, M. Langner, and J. Gabrielska (2003). The dependence of fluorescein-PE fluorescence intensity on lipid bilayer state. Evaluating the interaction between the probe and lipid molecules. Cell Mol. Biol. Lett. 8(4), 943–954.
C. D. Stubbs and B. W. Williams (1992). in J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy: Biochemical Applications, Vol. 3. Plenum Press, New York, pp. 231–271.
C. Bernsdorff, A. Wolf, R. Winter, and E. Gratton (1997). Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid–cholesterol bilayers. Biophys. J. 72(3), 1264–1277.
K. Brand, M. Hof, and F. W. Schneider (1991). Isotope effect in the time resolved fluorescence of anthracene in small unilamellar vesicles. Berichte Der Bunsen-Gesellschaft-Phys. Chem. Chem. Phys. 95(11), 1511–1514.
G. Duportail and P. Lianos (1996). in M. Rosoff (Ed.), Vesicles. Marcell Dekker, New York, pp. 296–372.
R. Hutterer, A. Haefner, F. W. Schneider, and M. Hof (1998). in J. Slavik (Ed.), Fluorescence Microscopy and Fluorescence Probes, Vol. 2. Plenum Press, New York, pp. 93–98.
U. A. van der Heide, G. van Ginkel, and Y. K. Levine (1996). DPH is localized in two distinct populations in lipid vesicles. Chem. Phys. Lett. 253(1–2), 118–122.
R. Hutterer, F. W. Schneider, W. T. Hermens, R. Wagenvoord, and M. Hof (1998). Binding of prothrombin and its fragment 1 to phospholipid membranes studied by the solvent relaxation technique. Biochim. Biophys. Acta 1414(1–2), 155–164.
T. Sheynis, J. Sykora, A. Benda, S. Kolusheva, M. Hof, and R. Jelinek (2003). Bilayer localization of membrane-active peptides studied in biomimetic vesicles by visible and fluorescence spectroscopies. Eur. J. Biochem. 270(22), 4478–4487.
J. H. Easter, R. P. Detoma, and L. Brand (1976). Nanosecond time-resolved emission-spectroscopy of a fluorescence probe adsorbed to l-alpha-egg lecithin vesicles. Biophys. J. 16(6), 571–583.
P. F. Barbara and W. Jarzeba (1990). in D. H. Volman, G. S. Hammond, and K. Gollnick (Eds.), Advances in Photochemistry, Vol. 15. Willey, New York, p. 1.
M. L. Horng, J. A. Gardecki, A. Papazyan, and M. Maroncelli (1995). Subpicosecond measurements of polar solvation dynamics—Coumarin-153 revisited. J. Phys. Chem. 99(48), 17311–17337.
B. Bagchi, D. W. Oxtoby, and G. R. Fleming (1984). Theory of the time development of the Stokes shift in polar media. Chem. Phys. 86(3), 257–267.
I. Rips, J. Klafter, and J. Jortner (1988). Solvation dynamics in polar liquids. J. Chem. Phys. 89(7), 4288–4299.
I. Rips, J. Klafter, and J. Jortner (1988). Dynamics of ionic solvation. J. Chem. Phys. 88(5), 3246–3252.
H. L. Friedman, F. O. Raineri, F. Hirata, and B. C. Perng (1995). Surrogate Hamiltonian description of solvation dynamics—Site number density and polarization charge-density formulations. J. Stat. Phys. 78(1–2), 239–266.
F. O. Raineri, B. C. Perng, and H. L. Friedman (1994). Surrogate Hamiltonian description of solvation dynamics—Resolution of global responses into spatial profiles. Chem. Phys. 183(2–3), 187–205.
N. G. Bakshiev (1964). Universal intermolecular interactions and their effect on the position of the electronic spectra of molecules in two-component solutions. Opt. Spectrosk. 16(5), 821–832.
Y. T. Mazurenko and N. G. Bakshiev (1970). Effect of orientation dipole relaxation on spectral and polarization characteristics of the luminescence of solutions. Opt. Spectosc. 28, 490–494.
W. Liptay (1974). in E. C. Lim (Ed.), Dipole Moments and Polarizabilities of Molecules in Excited States, Vol. 1. Academic Press, New York, pp. 129–229.
R. M. Stratt and M. Maroncelli (1996). Nonreactive dynamics in solution: The emerging molecular view of solvation dynamics and vibrational relaxation. J. Phys. Chem. 100(31), 12981–12996.
J. R. Lakowicz (1999). Principles of Fluorescence Spectroscopy, 2nd edn. Kluwer Academic/Plenum Press, New York.
I. Gonzalo and T. Montoro (1985). Interpretation of the fluorescence decay of 1-methylindole in polar-solvents by reorientational effects. J. Phys. Chem. 89(9), 1608–1612.
S. Arzhantsev, N. Ito, M. Heitz, and M. Maroncelli (2003). Solvation dynamics of coumarin 153 in several classes of ionic liquids: Cation dependence of the ultrafast component. Chem. Phys. Lett. 381(3–4), 278–286.
J. A. Ingram, R. S. Moog, N. Ito, R. Biswas, and M. Maroncelli (2003). Solute rotation and solvation dynamics in a room-temperature ionic liquid. J. Phys. Chem. B 107(24), 5926–5932.
N. Ito, S. Arzhantsev, M. Heitz, and M. Maroncelli (2004). Solvation dynamics and rotation of coumarin 153 in alkylphosphonium ionic liquids. J. Phys. Chem. B 108(18), 5771–5777.
A. A. Istratov and O. F. Vyvenko (1999). Exponential analysis in physical phenomena. Rev. Sci. Instrum. 70(2), 1233–1257.
V. Nagarajan, A. M. Brearley, T. J. Kang, and P. F. Barbara (1987). Time-resolved spectroscopic measurements on microscopic solvation dynamics. J. Chem. Phys. 86(6), 3183–3196.
M. Hof (1999). in W. Rettig, B. Strehmel, and S. Schrader (Eds.), Applied Fluorescence in Chemistry, Biology, and Medicine. Springer Verlag, Berlin, pp. 439–456.
R. Hutterer, F. W. Schneider, H. Sprinz, and M. Hof (1996). Binding and relaxation behaviour of Prodan and Patman in phospholipid vesicles: A fluorescence and H-1 NMR study. Biophys. Chem. 61(2–3), 151–160.
R. Hutterer, F. W. Schneider, H. Lanig, and M. Hof (1997). Solvent relaxation behaviour of n-anthroyloxy fatty acids in PC-vesicles and paraffin oil: A time-resolved emission spectra study. Biochim. Biophys. Acta Biomembr. 1323(2), 195–207.
M. Hof, J. Schleicher, and F. W. Schneider (1989). Time resolved fluorescence in doped aerogels and organosilicate glasses. Berichte Der Bunsen-Gesellschaft-Phys. Chem. Chem. Phys. 93(11), 1377
E. L. Wehry and L. B. Rogers (1966). in E. Hercules (Ed.), Fluorescence and Phosphorescence Analysis. Interscience, New York, pp. 81–149.
D. B. Siano and D. E. Metzler (1969). Band shapes of electronic spectra of complex molecules. J. Chem. Phys. 51(5), 1856–1859.
M. Maroncelli and G. R. Fleming (1987). Picosecond solvation dynamics of coumarin-153—The importance of molecular aspects of solvation. J. Chem. Phys. 86(11), 6221–6239.
E. W. Castner, M. Maroncelli, and G. R. Fleming (1987). Subpicosecond resolution studies of solvation dynamics in polar aprotic and alcohol solvents. J. Chem. Phys. 86(3), 1090–1097.
M. Yang and R. Richert (2001). Observation of heterogeneity in the nanosecond dynamics of a liquid. J. Chem. Phys. 115(6), 2676–2680.
J. Sýkora, V. Mudogo, R. Hutterer, M. Nepraš, J. Vaněrka, P. Kapusta, V. Fidler, and M. Hof (2002). ABA-C-15: A new dye for probing solvent relaxation in phospholipid bilayers. Langmuir 18(24), 9276–9282.
R. Richert (2001). Spectral diffusion in liquids with fluctuating solvent responses: Dynamical heterogeneity and rate exchange. J. Chem. Phys. 115(3), 1429–1434.
A. S. Klymchenko, G. Duportail, A. P. Demchenko, and Y. Mely (2004). Bimodal distribution and fluorescence response of environment-sensitive probes in lipid bilayers. Biophys. J. 86(5), 2929–2941.
R. Hutterer and M. Hof (2002). Probing ethanol-induced phospholipid phase transitions by the polarity sensitive fluorescence probes Prodan and Patman. Zeitschrift Fur Physikalische Chemie-Int. J. Res. Phys. Chem. Chem. Phys. 216, 333–346.
P. L. Chong, S. Capes, and P. T. T. Wong (1989). Effects of hydrostatic-pressure on the location of Prodan in lipid bilayers—A Ft-Ir study. Biochemistry 28(21), 8358–8363.
R. F. Loring, Y. J. Yan, and S. Mukamel (1987). Time-resolved fluorescence and hole-burning line-shapes of solvated molecules—Longitudinal dielectric-relaxation and vibrational dynamics. J. Chem. Phys. 87(10), 5840–5857.
R. S. Fee and M. Maroncelli (1994). Estimating the time-zero spectrum in time-resolved emission measurements of solvation dynamics. Chem. Phys. 183(2–3), 235–247.
J. Sýkora, P. Kapusta, V. Fidler, and M. Hof (2002). On what time scale does solvent relaxation in phospholipid bilayers happen? Langmuir 18(3), 571–574.
R. S. Fee, J. A. Milsom, and M. Maroncelli (1991). Inhomogeneous decay kinetics and apparent solvent relaxation at low-temperatures. J. Phys. Chem. 95(13), 5170–5181.
W. Rettig (1986). Charge separation in excited-states of decoupled systems—TICT compounds and implications regarding the development of new laser-dyes and the primary processes of vision and photosynthesis. Angewandte Chemie-Int. Ed. Eng. 25(11), 971–988.
D. Chakrabarty, P. Hazra, A. Chakraborty, and N. Sarkar (2003). Solvation dynamics of coumarin 480 in bile salt–cetyltrimethylammonium bromide (CTAB) and bile salt–Tween 80 mixed micelles. J. Phys. Chem. B 107(49), 13643–13648.
R. Hutterer, F. W. Schneider, and M. Hof (1997). Time-resolved emission spectra and anisotropy profiles for symmetric diacyl- and dietherphosphatidylcholines. J. Fluorescence 7, 27–33.
A. Chattopadhyay and E. London, (1987). Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry 26(1), 39–45.
J. Sýkora, P. Jurkiewicz, R. M. Epand, R. Kraayenhof, M. Langner, and M. Hof (2005). Influence of the curvature on the water structure in the headgroup region of phospholipid bilayer studied by the solvent relaxation technique. Chem. Phys. Lipids 135(2), 213–221.
R. Hutterer, A. Parusel, and M. Hof (1998). Solvent relaxation of Prodan and Patman: A useful tool for the determination of polarity and rigidity changes in membranes. J. Fluorescence 8(4), 389–393.
R. Hutterer and M. Hof (1996). Binding of prothrombin fragment 1 to phosphatidylserine containing vesicles: A solvent relaxation study. in J. Slavik (Ed.), Fluorescence Microscopy and Fluorescence Probes, Vol. 1. Plenum Press, New York, pp. 232–237.
M. Hof and P. Lianos (1997). Structural studies of thin AOT films by using the polarity fluorescent probe coumarin-153. Langmuir 13(2), 290–294.
H.-J. Egelhaaf, B. Lehr, M. Hof, A. Häfner, H. Fritz, F. W. Schneider, E. Bayer, and D. Oelkrug (2000). Solvation and solvent relaxation in swellable copolymers as studied by time-resolved fluorescence spectroscopy. J. Fluorescence 10(4), 383–392.
H. Bürsing, D. Ouw, S. Kundu, and P. Vöhringer (2001). Probing solvation dynamics in liquid water and at phospholipid/water interfaces with femtosecond photon-echo spectroscopies. Phys. Chem. Chem. Phys. 3(12), 2378–2387.
P. Dutta, P. Sen, S. Mukherjee, and K. Bhattacharyya (2003). Solvation dynamics in DMPC vesicle in the presence of a protein. Chem. Phys. Lett. 382(3–4), 426–433.
J. Zimmerberg and S. McLaughlin (2004). Membrane curvature: How BAR domains bend bilayers. Curr. Biol. 14(6), R250–R252.
W. B. Huttner and J. Zimmerberg (2001). Implications of lipid microdomains for membrane curvature, budding and fission—Commentary. Curr. Opin. Cell Biol. 13(4), 478–484.
M. Hof, R. Hutterer, N. Perez, H. Ruf, and F. W. Schneider (1994). Influence of vesicle curvature on fluorescence relaxation kinetics of fluorophores. Biophys. Chem. 52(2), 165–172.
K. Matsuzaki (1999). Why and how are peptide lipid interactions utilized for self-defense? Biochim. Biophys. Acta 1462(1–2), 1–10.
D. Allende, A. Vidal, S. A. Simon, and T. J. McIntosh (2003). Bilayer interfacial properties modulate the binding of amphipathic peptides. Chem. Phys. Lipids 122(1–2), 65–76.
J. A. Killian, I. Salemink, M. P. R. dePlanque, G. Lindblom, R. E. Koeppe, and D. V. Greathouse (1996). Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: Importance of hydrophobic mismatch and proposed role of tryptophans. Biochemistry 35(3), 1037–1045.
I. Z. Zubrzycki, Y. Xu, M. Madrid, and P. Tang (2000). Molecular dynamics simulations of a fully hydrated dimyristoylphosphatidylcholine membrane in liquid-crystaline phase. J. Chem. Phys. 112(7), 3437–3441.