Solvable lattice models related to the vector representation of classical simple Lie algebras
Tóm tắt
A series of solvable lattice models with face interaction are introduced on the basis of the affine Lie algebraX
(1)
=A
(1)
,B
(1)
,C
(1)
,D
(1)
. The local states taken on by the fluctuation variables are the dominant integral weights ofX
(1)
of a fixed level. Adjacent local states are subject to a condition related to the vector representation ofX
n
. The Boltzmann weights are parametrized by elliptic theta functions and solve the star-triangle relation.
Tài liệu tham khảo
Kuniba, A., Akutsu, Y., Wadati, M.: Virasoro algebra, von Neumann algebra and critical eight-vertex SOS models. J. Phys. Soc. Jpn.55 3285–3288 (1986)
Akutsu, Y., Wadati, M.: Knot invariants and critical statistical systems, J. Phys. Soc. Jpn.56 839–842 (1987)
Kohno, T.: Monodromy representations of braid groups and Yang-Baxter equations, preprint 1987. Ann. Inst. Fourier (to appear)
Turaev, V.G.: The Yang-Baxter equation and invariants of links, LOMI preprint E-3-87, 1987
Belavin, A.A., Drinfeld, V.G.: Solutions of the classical Yang-Baxter equation for simple Lie algebras. Funct. Anal. Appl.16 159–180 (1982)
Kulish, P.P., Reshetikhin, N.Yu., Sklyanin, E.K.: Yang-Baxter equation and representation theory. I. Lett. Math. Phys.5, 393 (1981)
Sklyanin, E.K.: Some algebraic structure connected with the Yang-Baxter equation. Funct. Anal. Appl.16, 263–270 (1982);17, 273–284 (1983)
Kulish, P.P., Reshetikhin, N.Yu.: Quantum linear problem for the sine-Gordon equation and higher representations. J. Sov. Math.23, 2435–2441 (1983)
Drinfeld, V.G.: Quantum groups, ICM 86 report
Jimbo, M.: Aq-difference analogue ofU(g) and the Yang-Baxter equation. Lett. Math. Phys.10, 63–69 (1985)
Jimbo, M.: Aq-analogue ofU(gI(N+1)), Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys.11, 247–252 (1986)
Baxter, R.J.: Exactly solved models in statistical mechanics. London: Academic 1982
Baxter, R.J.: Hard hexagons: Exact solution. J. Phys. A: Math. Gen.13, L 61-L 70 (1980)
Andrews, G.E., Baxter, R.J., Forrester, P.J.: Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities. J. Stat. Phys.35, 193–266 (1984)
Date, E., Jimbo, M., Miwa, T., Okado, M.: Automorphic properties of local height probabilities for integrable solid-on-solid models. Phys. Rev. B35, 2105–2107 (1987)
Jimbo, M., Miwa, T., Okado, M.: Solvable lattice models with broken ℤ n symmetry and Hecke's indefinite modular forms. Nucl. Phys. B275 [FS 17], 517–545 (1986)
Date, E., Jimbo, M., Kuniba, A., Miwa, T., Okado, M.: Exactly solvable SOS models: Local height probabilities and theta function identies, Nucl. Phys. B290 [FS 20], 231–273 (1987)
Date, E., Jimbo, M., Kuniba, A., Miwa, T., Okado, M.: Exactly solvable SOS models. II. Proof of the star-triangle relation and combinatorial identities. Adv. Stud. Pure Math.16 (to appear)
Jimbo, M., Miwa, T., Okado, M.: Solvable lattice models whose states are dominant integral weights ofA (1) n−1, Lett. Math. Phys.14, 123–131 (1987)
Jimbo, M., Miwa, T., Okado, M.: Local state probabilities of solvable lattice models: AnA (1) n−1 family, preprint RIMS-594, Kyoto Univ. (1987). Nucl. Phys. (to appear)
Baxter, R.J., Andrews, G.E.: Lattice gas generalization of the hard hexagon model. I. Startriangle relation and the local densities. J. Stat. Phys.44, 249–271 (1986)
Kuniba, A., Akutsu, Y., Wadati, M.: Exactly solvable IRF models. I. A three state model, J. Phys. Soc. Jpn.55, 1092–1101 (1986)
Akutsu, Y., Kuniba, A., Wadati, M.: Exactly solvable IRF models. II.S N generalizations. J. Phys. Soc. Jpn.55, 1466–1474 (1986)
Akutsu, Y., Kuniba, A., Wadati, M.: Exactly solvable IRF models. III. A new hierarchy of solvable models. J. Phys. Soc. Jpn.55, 1880–1886 (1986)
Date, E., Jimbo, M., Miwa, T., Okado, M.: Fusion of the eight-vertex SOS model, Lett. Math. Phys.12, 209–215 (1986)
Jimbo, M., Miwa, T., Okado, M.: AnA (1) n−1 family of solvable lattice models. Mod. Phys. Lett. B1, 73–79 (1987)
Jimbo, M., Miwa, T., Okado, M.: Symmetric tensors of theA (1) n−1 family, preprint RIMS 592, Kyoto University (1987). Algebraic Analysis (Festschrift for M. Sato's 60th birthday) Academic Press 1988
Pasquier, V.: Exact solubility of theD n series. J. Phys. A: Math. Gen.20, L217-L220 (1987)
Kashiwara, M., Miwa, T.: A class of elliptic solutions to the star-triangle relation. Nucl. Phys. B275 [FS 17], 121–134 (1986)
Kuniba, A., Yajima, T.: Local state probabilities for solvable RSOS models:A n ,D n ,D (1) n , andA (1) n , preprint. Tokyo University 1987
Wenzl, H.: Representations of Hecke algebras and subfactors. Thesis, University of Pennsylvania 1985
Tsuchiya, A., Kanie, Y.: Vertex operators on conformal field theory on ℙ1 and monodromy representations of braid groups. Adv. Stud. Pure Math.16 (to appear)
Pasquier, V.: Continuum limit of lattice models built on quantum groups. Saclay preprint SPHT/87-125
Kac, V.G., Peterson, D.H.: Infinite-dimensional Lie algebras, theta functions and modular forms. Adv. Math.53, 125–264 (1984)
Bourbaki, N.: Groupes et Algebres de Lie, Chaps. 4–6. Paris: Hermann 1968
Cherednik, I.V.: Some finite dimensional representations of generalized Sklyanin algebra. Funct. Anal. Appl.19, 77–79 (1985)
Richey, M.P., Tracy, C.A.: ℤ n Baxter model: symmetries and the Belavin parametrization. J. Stat. Phys.42, 311–348 (1986)
Baxter, R.J.: Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. II. Equivalence to a generalized ice-type lattice model, ibid.76, 25–47 (1973)
Belavin, A.A.: Dynamical symmetry of integrable quantum systems. Nucl. Phys. B180 [FS 2], 189–200 (1981)
Bazhanov, V.V.: Trigonometric solutions of the triangle equation and classical Lie algebras. Phys. Lett.159, 321–324 (1985)
Jimbo, M.: QuantumR matrix for the generalized Toda system. Commun. Math. Phys.102, 537–547 (1986)
Jimbo, M.: QuantumR matrix related to the generalized Toda system: an algebraic approach. In: Proceedings of the Symposium on field theory, quantum gravity and strings. Meudon and Paris VI, 1984/85. Lecture Notes in Physics, Vol. 246, pp. 335–361. Berlin, Heidelberg, New York: Springer 1986
